
UNIVERSIDADE FEDERAL DO ESTADO DO RIO DE JANEIRO
CENTRO DE CIÉNCIAS EXATAS E TECNOLOGIA

PROGRAMA DE PÓS-GRADUAÇÃO EM INFORMÁTICA

BPM Text Model: Automatic Synchronization of BPM Description Artifacts

Raphael de Almeida Rodrigues

Orientadores

Leonardo Guerreiro Azevedo

Kate Cerqueira Revoredo

RIO DE JANEIRO, RJ - BRASIL
SETEMBRO de 2016

BPM Text Model: Automatic Synchronization of BPM Description Artifacts

Raphael de Almeida Rodrigues

DISSERTAÇÃOAPRESENTADACOMOREQUISITO PARCIAL PARAOBTENÇÃO
DO TÍTULO DE MESTRE PELO PROGRAMA DE PÓS-GRADUAÇÃO EM INFOR-
MÁTICADAUNIVERSIDADEFEDERALDOESTADODORIODE JANEIRO (UNIRIO).
APROVADA PELA COMISSÃO EXAMINADORA ABAIXO ASSINADA.

Aprovada por:

Leonardo Guerreiro Azevedo, D.Sc. - UNIRIO

Kate Cerqueira Revoredo, D.Sc. - UNIRIO

Fernanda Araújo Baião Amorim, D.Sc. - UNIRIO

Marcelo Fantinato, D.Sc. - USP

RIO DE JANEIRO, RJ - BRASIL
SETEMBRO de 2016

Rodrigues, Raphael de Almeida
R696 BPM Text Model: Automatic Synchronization of BPM Description Artifacts

/ Raphael de Almeida Rodrigues, 2016.
186f. ; 30 cm + 1 CD-ROM

Orientador: Leonardo Guerreiro Azevedo
Coorientadora: Kate Cerqueira Revoredo
Dissertação (Mestrado em Informática) - Universidade Federal do

Estado do Rio de Janeiro, Rio de Janeiro, 2016.

1. Processamento de linguagem natural (Computação). 2. Framework
(Arquivo de computador). 3. Java (Linguagem de programação de computador).
I. Azevedo, Leonardo Guerreiro. II. Revoredo, Kate Cerqueira. III. Universidade
Federal do Estado do Rio de Janeiro. Centro de Ciências Exatas e Tecnológicas.
Curso de Mestrado em Informática. IV. Título.

CDD - 006.35

For my family, that thought me nothing is impossible.
For my grandmother, that spiritually guided me through this journey.

For my sweet wife Bela, whose love made me a better person.

i

Acknowledgement

I would like to thank the teachers and staff of the PPGI-UNIRIO, by work to make a
great graduate program, especially at a time with ever smaller investments for the devel-
opment of Brazilian scientific research. In the midst of many difficulties, they had made
the best, giving all support for me and my colleagues of PPGI-UNIRIO.

My special thanks go to Kate Revoredo and Leonardo Azevedo, for proof reading my
thesis and for their valuable corrections and recommendations.

I want to thank my family for their support and understanding during times of high
work load. thank you for your love and warmth, encouragement, patience, and for believ-
ing in me.

Thanks for my friend and guide, Leonardo Azevedo, for its dedication, patience and
skills whichwere essential for the development of this thesis, and for its major contribution
in my academic and professional career. Thanks for guiding me through my bachelor
studies and staying by my side through my master course. Thanks for giving me the set
of skills needed to finish this journey.

I would like to thanks my grandmother, that always tried to calm me down and renew
my strengths. Thanks for showing me the right path when I could not see. I know that you
are watching me from above and I hope that you will be proud to see how your grandson
has grown. I love you, and this victory is for you!

I would like to place a special thanks for Isabela Medeiros, who in the beginning of
this Master course was my girlfriend and now has become my wife and life-time partner.
Thanks for understanding my lack of time, for helping me to overcome several challenges
and accepting the challenge to live a new life in São Paulo by my side.

Finally, I would like to thanks Signavio initiative whose support was essential during
this whole research.

ii

Rodrigues, Raphael de Almeida. BPM Text Model: Automatic Synchronization
of BPM Description Artifacts. UNIRIO, 2016. 186 páginas. Dissertação de Mestrado.
Departamento de Informática Aplicada, UNIRIO.

ABSTRACT

The proper representation of a Business process is important for its execution and un-
derstanding. BPMN has been used as the standard notation for business process models,
however domain specialists, which are experts in the business, do not have necessarily the
modeling skills to easily read a business process model. It is easier for them to read in
natural language. For this reason, both model and text are necessary artifacts for a good
communication between business specialists and system analysts. The manual manage-
ment of both resources may result in inconsistencies, due to unilateral modifications. This
research propose a methodology for text generation from process models and vice-versa,
while also applying changes made to the text back to the original process model. The
technique also enables domain experts to edit formal process models without the efforts
of learning a modeling language. The methodology was validated through a language-
independent framework, instantiated using Java standard technology. The methodology
was evaluated through case studies and experiments. Three main conclusions could be
drown from the evaluation. First, textual work instructions can be considered equivalent
to the process models in terms of knowledge representation within an acceptable threshold
(74% of the subjects claim the equivalence between both knowledge representations vary
from 68% to 100%). Second, the chosen textual format is good (86% of the subjects claim
the textual descriptions vary from excellent to good). Third, the knowledge represented
by the manually updated text can be considered equivalent to the automatically updated
process model after the synchronization within an acceptable threshold (78% of the sub-
jects claim the knowledge represented by the manually updated text is equivalent to the
automatically updated process model).

Keywords: BPM; BPMN; Natural Language Generation; Natural Language Process-
ing.

iii

Rodrigues, Raphael de Almeida. BPM Text Model: Automatic Synchronization
of BPM Description Artifacts. UNIRIO, 2016. 186 páginas. Dissertação de Mestrado.
Departamento de Informática Aplicada, UNIRIO.

RESUMO

A representação adequada de um Processo de Negócio é importante para seu entendi-
mento e execução. BPMN foi utilizado como a notação padrão para modelos de processo,
porém especialsitas de domínio, que são os especialsitas do negócio, não detêm as habil-
idades de modelagem necessárias para facilmente ler um modelo de processo. Para eles,
é mais fácil ler um texto em linguagem natural. Por esta razão, ambos modelos e textos
são artefatos necessários para a comunicação adequada entre especialsitas de negócio e
analistas de sistemas. A gestão manual de ambos recursos pode gerar inconsistências,
devido a alterações unilaterais. Esta dissertaão propõe uma metodologia para geração de
texto a partir de modelos e vice-versa, aplicando as alterações textuais no modelo de pro-
cesso original. A proposta foi validada através do desenvolvimento de um framework
genérico, instanciado utilizando a linguagem de programação Java. A metodologia foi
avaliada através de estudo de caso e experimentos. Três conclusões principais podem ser
obtidas atraves da avaliação. Primeiro, descrições textuais de processo podem ser con-
sideradas equivalentes a modelos em termos de representação de conhecimento (74% dos
entrevistados avaliam a equivalencia do conhecimento transmitido por ambas represen-
tações entre 68% e 100%). Segundo, o formato escolhido para representar textualmente
os processos é boa (86% dos participantes avaliaram a qualidade das descrições textuais
entre excelente e boa.) Terceiro, o conhecimento representado pelos descrições textuais
que foram manualmente alteradas podem ser consideradas equivalentes aos modelos de
processo atualizados autoamticamente (78% dos entrevistados avaliaram que o conheci-
mento representado pelo texto alterado manualmente é equivalente ao modelo de processo
gerado apos a atualização automática)

Palavras-chave: BPM, BPMN, Geração de Linguagem Natural, Processamento de
Linguagem Natural.

iv

Table of Contents

1 Introduction 1

1.1 Contextualization . 1

1.2 Motivation . 2

1.3 Problem Characterization . 4

1.4 Proposed Solution . 5

1.5 Methodology Applied . 9

1.6 Work Structure . 11

2 Theoretical Foundation 13

2.1 Business Process and the BPMN notation 13

2.2 NLG . 19

2.2.1 Intermediate Structures Used in NLG 20

2.2.2 Techniques for Translating Machine Artifacts 22

2.2.3 Necessary Steps to Develop Natural Language Generation Systems 24

2.2.3.1 Pipeline Architecture 24

2.2.3.2 Data-to-Text Architecture 26

2.2.4 NLG Steps in the context of BPMN text generation 27

2.3 NLP . 30

v

2.3.1 Syntax Parsing: Part-Of-Speech Tagging (POS) 31

2.3.2 Tokenization . 32

2.3.3 Stop Words Removal . 33

2.3.4 Anaphora Resolution . 34

2.3.5 NLP Steps in the context of BPMN text generation 34

2.4 Chapter Summary . 36

3 The Round Trip Approach 37

3.1 Generic Framework for Natural Language Text 39

3.1.1 The Framework Architecture . 40

3.1.2 Framework classes and Interfaces Specification 48

3.2 Model to Text: Natural Language Generation from BPMN process models 53

3.2.1 Text Planing . 53

3.2.2 Sentence Planning . 54

3.2.3 Sentence Realization . 55

3.3 Text to Model: BPMN process model generation from Natural language
Texts . 56

3.3.1 Text Planing . 57

3.3.2 Sentence Text Planning . 60

3.3.3 Process Model Realization . 62

3.4 Strategy for Incorporating Textual and Model-based Changes 65

3.4.1 Textual Diff . 67

3.4.2 Updating the original process model 69

3.5 Framework’s activities sequence . 73

3.6 Chapter Summary . 80

vi

4 Evaluation 81

4.1 PoC: Proof-of-Concept . 81

4.2 Experiment: Business Process Automated Description Quality 86

4.2.1 Experiment Design . 86

4.2.2 Analysis and Discussion . 92

4.2.3 Threats to Validity . 98

4.2.4 Conclusion . 101

4.3 Experiment: Text-Model Synchronization 101

4.3.1 Experiment Design . 102

4.3.2 Analysis and Discussion . 105

4.3.3 Threats to Validity . 107

4.3.4 Conclusion . 108

4.4 Chapter Summary . 108

5 Related Works 109

5.1 Business Process Understandability . 109

5.2 Process Models to Textual Descriptions 111

5.3 Textual Descriptions to Process Models 112

5.4 Comparison . 115

5.5 Use of NLP techniques in other contexts 118

6 Conclusion 121

6.1 Limitations . 123

6.2 Further Research . 124

A Appendix - Algorithms 139

vii

B Appendix - Process Models and Textual Descriptions 155

C Appendix - Extending the Framework to new languages 165

viii

List of Figures

1.1 Illustration of the round-trip approach. 6

1.2 Research methodology underlying this master thesis. 10

2.1 Level of Abstractions for process model notations [137]. 14

2.2 BPMN elements summary, adapted from Michele and Alberto [17]. . . . 15

2.3 Considered subset of BPMN symbols, adapted from Michele and Alberto
[17]. 16

2.4 Business Process Model sample using the BPMN notation [62]. 18

2.5 (a) A graph and its fragments, (b) a RPST that represents the graph de-
picted in (a). 20

2.6 Abstract version (Graph) from the process model depicted in Figure 2.4. . 21

2.7 Corresponding RPST from the abstract process depicted in Figure 2.6. . 21

2.8 Simple example of a DSynT Tree, based on the sentence ’The room-
service manager takes down the order.’ 22

2.9 NLG pipeline approach, defined by Reiter and Dale. 25

2.10 Extended pipeline approach. 26

2.11 Extended pipeline (data-to-text) architecture. 28

3.1 Illustration of the round-trip approach. 38

3.2 NLG Core Architecture - UML Package diagram. 42

ix

3.3 Implementation of the hot spots defined by the architecture. 43

3.4 NLP Core Architecture - UML Class diagram. 44

3.5 Classes used to generate a natural language text from a business process
model. Together they form the NLG core. 49

3.6 Classes used to deal with the linguistic rules of a specific language. 49

3.7 Interface responsible for the definition of methods needed to classify a
label into one specific style. 51

3.8 Interface responsible for the definition of methods needed to extract in-
formation from a specific label style. 51

3.9 Interface responsible for the methods definitions of text analysis inside a
process model label. 51

3.10 Interface responsible for all the necessary methods definitions for the stor-
age and retrieval of the label properties. 52

3.11 Interface responsible for the definition of the necessary methods which
are called to generate the final text. 52

3.12 Text to model pipeline - Steps performed to generate BPMN model from
natural language text. 57

3.13 Process fragment used for illustration purpose. 61

3.14 Example of the relations among the objects seen as a Tree Structure. . . . 63

3.15 SentenceText instance A is broken into two parts, to address the Atomicity
challenge: SentenceText instance A’ and SentenceText instance B. 64

3.16 Simple process, represented in both text and model, designed only to il-
lustrate a simple role change example. 67

3.17 Updated version of the previous simple process, represented in both text
and model. 67

3.18 Original processmodel and its updated version, after having textual changes
reflected to it. 71

3.19 Original process model and its updated version, after removing a gateway
sentence from the text. 72

x

3.20 Activity Insert: Original process model and its updated version, after hav-
ing textual changes reflected to it. 73

3.21 Gateway-And Insert: Original processmodel and its updated version, after
having textual changes reflected to it. 73

3.22 Sequence diagram representing the steps to generate text from model. . . 76

3.23 Sequence diagram representing the steps to update themodel from changes
in its text representation. 79

4.1 Evaluation methodology used for the Proof of Concept. 84

4.2 A text-model pair describing a process fragment. 89

4.3 A text-model pair describing a process fragment, which is not equivalent. 90

4.4 Subject’s answers distribution among equivalence intervals. 93

4.5 Participant’s answers distribution among five groups (Ungrouped). 94

4.6 Participant’s answers distribution among two groups (Grouped). 94

4.7 Chart that shows subject’s answers distribution among the options avail-
able regarding the textual description quality. 95

4.8 Chart that shows subject’s answers distribution among the options avail-
able regarding the textual description quality. 96

4.9 Two clusters identified by the hierarchical clustering technique. 97

4.10 Chart that shows experienced subject’s answers distribution among equiv-
alence intervals. 98

4.11 Chart that shows inexperienced subject’s answers distribution among equiv-
alence intervals. 99

4.12 Chart that shows experienced subject’s answers distribution among the
options available regarding the textual description quality. 99

4.13 Chart that shows inexperienced subject’s answers distribution among the
options available regarding the textual description quality. 100

4.14 A text-model pair which was used during the experiment. 103

xi

4.15 Subject’s answers distribution among the available accordance options
(grouped into two groups). 105

4.16 Process fragment which illustrates the scenario where an updated made to
a Gateway description should also trigger an event description update. . . 107

4.17 Process fragment which illustrates the optimal scenario where an updated
made to a Gateway also update the event description. 107

B.1 Simple Exam application process, written in English. 156

B.2 Simple Exam application process, written in Portuguese. 156

B.3 Simple Secretary process, written in English. 157

B.4 Simple Secretary process, written in Portuguese. 157

B.5 Hotel Service process, written in English. 158

B.6 Hotel Service process, written in Portuguese. 159

B.7 English Bread delivery service subscription in BPMN. 161

B.8 Portuguese Bread delivery service subscription in BPMN. 162

B.9 claims handling process . 163

C.1 Dictionary file structure. In this example, it is shown a Portuguese dictio-
nary file. 166

xii

List of Tables

2.1 Steps to the automatic text generation (adapted from Leopold [62]) 29

2.2 Some part-of-speech tags frequently used for tagging English 32

2.3 Steps for Mapping Natural Language Text to Process Models. 35

3.1 Overview of the current template text pattern supported by the NLP Core
Component. 47

3.2 Overview of the Process Model elements supported by the NLP Core
Component . 48

3.3 Supported Labeling styles . 54

3.4 Supported Text Pattern received as input. 58

3.5 Overview of Change Operations for Process Model and Text and their
Connection, adpated from Kolb et al. [51] 66

3.6 Overview of Operations for Updating Links 69

4.1 Overall characteristics of the complete test data set. 82

4.2 Natural Language Text generated by analyzing the process model data and
extracting textual information. 85

4.3 Questions about the participant’s experience with process models (char-
acterization). 89

4.4 Question about the equivalence between the textual work instruction and
the BPMN model, which describes a process fragment. 91

xiii

4.5 Question about the textual work instruction quality, which describes a pro-
cess fragment. 91

4.6 Question about the process model synchronization after having changes
made to the original text. 104

5.1 Papers’ Comparison . 118

B.1 English Natural Language Text generated by analyzing the process model
data and extracting textual information. 155

B.2 Portuguese Natural Language Text generated by analyzing the process
model data and extracting textual information. 157

B.3 English Natural Language Text generated by analyzing the process model
data and extracting textual information. 157

B.4 Portuguese Natural Language Text generated by analyzing the process
model data and extracting textual information. 157

B.5 English Natural Language Text generated by analyzing the process model
data and extracting textual information. 158

B.6 Portuguese Natural Language Text generated by analyzing the process
model data and extracting textual information. 159

B.7 English Natural Language Representation for the Bread delivery service
subscription . 160

B.8 Portuguese Natural Language Representation for the Bread delivery ser-
vice subscription . 163

B.9 English Natural Language Text generated by analyzing the Claims Han-
dling process model and extracting textual information. 164

xiv

List of Algorithms

1 identifySentenceType algorithm, from PortugueseLanguageProcessor im-
plementation . 140

2 extractActivityProperties algorithm, from PortugueseLanguageProcessor
implementation . 141

3 extractEventProperties algorithm, fromPortugueseLanguageProcessor im-
plementation . 142

4 extractGatewayProperties algorithm . 142
5 processTextDiff algorithm . 142
6 processRemovals algorithm . 143
7 processSentencesRecursivly algorithm, from SurfaceRealizer class 144
8 processInserts algorithm . 145
9 removeStopWords algorithm, from ILabelHelper interface specification . 146
10 checkForConjunction algorithm (for Portuguese) 147
11 removeArticleFromBo algorithm (for Portuguese) from PortugueseLabel-

Helper implementation . 147
12 getPrepositions algorithm (for Portuguese) from PortugueseLabelHelper

implementation . 148
13 getPrepositions algorithm (for English) 148
14 isAdverb algorithm (for Portuguese) from PortugueseLabelHelper imple-

mentation . 148
15 isVerb algorithm (for Portuguese) fromPortugueseLabelHelper implemen-

tation . 149
16 isNoun algorithm (for Portuguese) from PortugueseLabelHelper imple-

mentation . 149
17 isAdjective algorithm (for Portuguese) from PortugueseLabelHelper im-

plementation . 149
18 getInfinitive algorithm (for Portuguese) from PortugueseLabelHelper im-

plementation . 150

xv

19 getParticiple algorithm (for Portuguese) from PortugueseLabelHelper im-
plementation . 150

20 getPresentForm algorithm (for Portuguese) from PortugueseLabelHelper
implementation . 150

21 is3PS algorithm (for Portuguese) from PortugueseLabelHelper implemen-
tation . 151

22 transformToSingularForm algorithm (for Portuguese) from Portuguese-
LabelHelper implementation . 151

23 getGender algorithm (for Portuguese) from PortugueseLabelHelper im-
plementation . 152

24 getArticle algorithm (for Portuguese) from PortugueseLabelHelper imple-
mentation . 152

25 isDefArticle algorithm (for Portuguese) from PortugueseLabelHelper im-
plementation . 153

26 isPronoun algorithm (for Portuguese) from PortugueseLabelHelper im-
plementation . 153

27 getPronouns algorithm (for Portuguese) from PortugueseLabelHelper im-
plementation . 153

28 posTagging algorithm . 154

xvi

List of Abbreviations

BPM Business Process Management
BPDM Business Process Definition Metamodel
BPMN Business Process Model Notation
BPMS Business Process Management Systems
BPQL Business Process Query Language
DSynt Deep-syntatic tree
EPC Eventdriven Process Chain
JSON JavaScript Object Notation
NLG Natural Language Generation
NLP Natural Language Processing
NLU Natural Language Understanding
OMG Object Management Group
PoC Proof-of-Concept
POS Part-Of-Speech Tagging
RDF Resource Description Framework
RE Regular Expressions.
REGEX Regular Expressions.
RPST Refined Process Structure Tree
SPARQL Simple Protocol And RDF Query Language
UML Unified Modeling Language
YAWL Yet Another Workflow Language

xvii

1. Introduction

This section provides an introduction to this master thesis. Section 1.1 contextualizes
the work. After a discussion of the motivational aspects in Section 1.2, the contribution to
the body of knowledge of Information Systems research is highlighted in Section 1.3 and
Section 1.4. Section 1.5 enlightens the contribution in the perspective of design science.
Then, the introduction concludes by providing an outlook on the structure of this master
thesis in Section 1.6.

1.1 Contextualization

A model is a representation of an idea, an object or even a process or a system that
is used to describe and explain phenomena that cannot be experienced directly. It is an
abstraction of the reality. Models are central to what scientists do, both in their research
and when communicating their explanations. They guide research through simplified rep-
resentations of an imagined reality that enable predictions to be developed and tested by
experiments [120]. Models can be found throughout several disciplines and in different
formats. For instance, although not common to be referenced as such, textual descrip-
tions can be considered as a specific model format since it also abstract the reality through
natural language text. Models are used extensively in Computer Science and Information
Systems disciplines based in their expressiveness power when compared to other forms
of representations, e.g, textual descriptions [8].

It is widely accepted that presenting data in the form of models, graphs, diagrams or
pictures can enhance data comprehension, decision-making and communication of infor-
mation about data [14, 124]: “A picture is worth a thousand words”. The mechanism
behind this effect is through inducing cognitive processes, such as visual chunking, men-
tal imagery and parallel processing [139], as an external aid to reduce demands on human
memory [12], or to assist mental integration of complex data [100].

1

CHAPTER 1. INTRODUCTION 2

However, although the instructional and educational potential of models (or graphs) is
widely acknowledged, in several cases, models are not always more effective than other
methods of representation. For example, many studies on process model understandability
have shown how the comprehension of process models may be complex, even for people
who are familiar with process modeling [29, 103]. There are also some studies indicating
that it is preferable to discuss the concepts expressed by conceptual models through natural
language text [15]. In particular, work instructions that describe tasks at a high level of
detail are often documented in the form of textual descriptions, as this format is more
suitable for specifying a high number of details [3]. As a consequence, the joint use of
process textual descriptions and models is important to achieve better understanding.

Business process models provide an abstract graphical view on organizational proce-
dures by reducing the complex reality to a number of activities. By doing so, they help
to foster an understanding of the underlying organizational procedures, serve as process
documentation, and represent an important asset for organizational redesign [58]. They
have proven to be an effective means of specification [13].

Business processmanagement is a discipline which seeks to increase the efficiency and
effectiveness of companies by holistically analyzing and improving business processes
across departmental boundaries and plays an important role both in business process re-
design initiatives and in the development of process-aware information systems. In order
to depict business processes, many companies use specific notations such as BPMN [50],
which was developed and standardized by the Object Management Group [88].

1.2 Motivation

The process models resulting from projects for process-aware information systems
have to meet high quality standards since the costs of correcting errors grow exponen-
tially if they are discovered at later stages. For this reason, it is of paramount importance
to extensively validate the created models already in the beginning of the development
project [22]. Nevertheless, process models in practice have a substantial amount of qual-
ity issues [75, 76], which can become a threat for the success of the whole modeling
project [4]. The reasons for bad quality can be manifold. One of the central issue in this
context is the persons involved with a modeling project might not have sufficient expe-
rience with modeling [111]. This can be the case when business professionals are asked
to model the processes of their department themselves or when process analysts have to
interact with business professionals who are not capable or willing to study the created

CHAPTER 1. INTRODUCTION 3

process models, resulting in a communication gap between the domain expert and the
modeling expert [16]. A way to deal with these challenges is to enhance the modeling
process with steps for validation and verification. However, while verification has been
intensively studied in recent research [128], there has been a notable research gap on how
the validation of a process model can be supported by a modeling tool if the modeler is
not a modeling expert.

While notations like BPMN have been proven to be useful in many different scenarios,
it still represents a challenge for many employees to fully understand the semantics of
a process model [29, 103]. For example, often the validation and the usage of process
models is hampered by the fact that many domain experts are not able to understand the
models in detail [62]. If the reader is not familiar with the wide range of elements and
concepts (i.e., gateways, events, or actors), large parts of the process may remain unclear
or even bemisunderstood by the reader [32]. Training employees in understanding process
models is associated with a considerable amount of time and money and can hardly be
considered an option for the entire workforce of a company.

For this reason, modeling experts are required to iteratively formalize and validate
the models in collaboration with the domain experts. But, this traditional procedure of
extracting process models through interviews, meetings, or workshops tends to be cost
and time intensive due to the informal setting and ambiguity ormisunderstandings between
the involved participants [113, 102]. Therefore, the initial elicitation of conceptual models
presents a knowledge acquisition bottleneck.

To reduce the process knowledge bottleneck, many so-called verbalization techniques
have been proposed that allows mapping conceptual models to natural language [86]. For
data modeling, verbalization techniques provide a direct mapping from model to natural
language assisting the discourse between system analysts and domain experts in the con-
text of requirements engineering [132, 86, 38]. For process modeling, verbalization tech-
niques are responsible for transforming process models to natural language text, which can
be read and understood by persons without specific modeling skills [110, 62, 63, 33, 34].
Nevertheless, while these works allows for generating text from a process models, it does
not provide the possibility to generate process models from natural language text, nor
to reflect edits in generated text back to the process model. As a consequence, domain
experts are not able to alter or create process models without relying on modeling experts.

CHAPTER 1. INTRODUCTION 4

1.3 Problem Characterization

Many companies maintain both process models and textual work instructions to de-
pict its processes [129]. The use of both knowledge representations is needed to address
specific audience. While domain experts are usually not qualified for reading process
models, having to rely on textual descriptions, modeling experts prefer using the model
representation. This, however, means that companies face redundant effort for updating
both process knowledge representation artifacts.

For instance, when a domain expert needs to update a process description, it must: (i)
fetch its natural language representation; (ii) update the textual description with the de-
sired changes; and, (iii) update the original process model, reflecting the process changes.
The first task, i.e., generating the textual description from the original process model, can
be completely automatized by using the proposed process verbalization techniques. Nev-
ertheless, the last task must be manually performed by someone with modeling skills and
experience with the specific process model notation. As most domain specialists do not
have such set of skills and experience, the last task must be delegated to system analysts
[32]. This is prone to several inconsistencies problems, as only one of the artifacts is
modified or updated.

Thus, in order to enable domain experts to create or update formal models simply
through a textual description and to leverage the information potential of already existing
text documents, an automatic transformation technique is needed. The transformation
technique must be also capable of preserving the process verbalization techniques, inte-
grating it with process model generation. By providing automation support, it will be
possible to achieve substantial savings, solve the mentioned inconsistency problem and to
enable a quicker realization of BPM-projects and their benefits.

Therefore, the goal of this master thesis is to develop an automated transformation
technique, deploy it in a prototype implementation, and to evaluate it.

The main research question addressed by this master thesis is: How may organiza-
tions maintain both business process representations (models and textual descriptions)
automatically synchronized?

CHAPTER 1. INTRODUCTION 5

1.4 Proposed Solution

The goal of this work is to define a technique that is able to generate natural language
texts from process models and also apply changes to the model from editions on the text,
i.e., a round-trip approach (model-text-model). To accomplish such goal, our tech-
nique is based on correlating elements from the process model to text elements (sentences)
in the natural language text. Based on this, we are capable of generating text elements from
business process elements and storing its relations in intermediate structures. Through
these intermediate structures, we explore the information and map them as natural lan-
guage sentences. Changes on to the natural language text are reflected back to the original
process model, due to the tracking of changes in both artifacts. In other words, if the user
change the process model, the text is updated accordingly and if the text is updated by the
user, the process model is also updated. We called this technique as Round-trip, because
it is capable of closing a synchronization cycle between both knowledge representation
artifacts. The designed technique can be adapted to different languages, e.g., English,
Portuguese, and German.

Figure 1.1 details the proposed solution, which is explained in more details in Chapter
3. Using our approach domain specialists do not need to expend training time in a specific
notation or in process modeling discipline. They are able to update process model artifacts
by editing a natural language text derived from the original process model. As to system
analysts, they are relieved from the time-intensive modeling task by writing and updating
natural language texts.

CHAPTER 1. INTRODUCTION 6

Figure 1.1: Illustration of the round-trip approach.

This master thesis provides the following contribution to the body of knowledge of
Information Systems research:

• Literature Review - In-depth study of the works done in the area, including con-
cepts, case studies and techniques related to their original themes. These works were
evaluated regarding their strengths and weaknesses.

1. Research on the state of the art in NLG (Natural Language Generation), spe-
cially regarding natural language text generation from business process mod-
els;

2. Research on the state of the art in NLP (Natural Language Processing), spe-
cially regarding process models and the problem of automated business pro-
cess model generation;

CHAPTER 1. INTRODUCTION 7

3. Research on the state of the art in Model learning and refinement from natural
language text;

• Categorization of Issues - Based on these findings, a list of challenges, which are
relevant for a business process model transformation approach, is presented to guide
future works on this particular research field.

• Novel Transformation Approach - A framework was developed based on the list
of challenges and the associated benefits of a round-trip. It is the first which does
permit the user to generate natural language texts from a machine artifact (e.g.,
BPMNprocessmodel) and to synchronize BPMNmodels through textual operations
made to natural language texts, in the same environment. Furthermore, allows the
extension and customization of natural language processing algorithms and strate-
gies through the use of specific interfaces. Finally, it covers a wider spectrum of
modeling constructs then other approaches and includes support for multiple lan-
guages through the definition of a natural language-independent module.

• Prototype - The proposal was implemented and tested in a research prototype. The
source code is available athttps://bitbucket.org/rar150/unirio-workspace/
src.

• Extensible and Language-Independent Framework - Several interfaces were de-
fined in the core framework’s components, making it generic and extensible for
new implementations that may be better suitable for specific scenarios that were not
defined beforehand. This allows the framework’s reuse by implementing specific
interfaces methods.

• Modeling Language Independence - In industry, several modeling languages are
used. Frequently found examples include BPMN, EPCs, and UML. Existing so-
lutions often only focus one of these languages (see e.g., [84, 60]). The business
process model specific generation component (BPMN Model Generation) was de-
signed as a separate independent module. It can be replaced by a custom module
to offer support to new notations. As a result, we are able to define a round-trip
approach that can be employed for commonly used modeling languages.

• Evaluation Approach - To assess the accuracy and quality of the transformation
approach, we created an evaluation methodology based on a PoC (Prof of Concept)
and experiments.

• Technological and Scientific Contributions:

https://bitbucket.org/rar150/unirio-workspace/src
https://bitbucket.org/rar150/unirio-workspace/src

CHAPTER 1. INTRODUCTION 8

– If business users are not familiar with business process modeling notations,
they can edit a natural language text created from the process model. Then,
the updated text can be automatically transformed back into an updated version
of the process model.

– If one artifact is changed, the changes can be automatically reflected in the
other artifact.

– It is even no longer necessary tomaintain both artifacts. A company can simply
maintain a repository of process models. The corresponding natural language
texts can be automatically generated at any time and are always consistent with
the process models.

– There is no need to train employees in BPMN notation. If the training is nec-
essary, natural language texts can be used to short the learning curve.

– The communication between business specialists and system analysts flow
more naturally due to the use of specific artifacts according to their specific
skills or knowledge.

• Publication of partial and final results - During this research, several questions
concerned with linguistic analysis in process models were addressed. The following
papers document the results:

– An Experiment on Process Model Understandability Using Textual Work In-
structions and BPMN Models - Paper that describes an experiment to address
if there are significant differences in terms of process understand ability de-
pending on whether textual work instructions or process models are used to
represent a business process. The experiment can be classified as “true exper-
imental design” [101], because randomization techniques were applied during
the sample selection, to ensure the groups were similar among each other. In
total, 73 individuals (students and IT professionals) were selected to partici-
pate in the experiment. The results and data gathered from the experiment are
depicted in more details in [108].

– A Tool to Generate Natural Language Text from Business Process Models -
Paper that describes the initial version of the proposed framework, before
concluding the round-trip approach. The presented version was capable of
generating full natural language text from process models. The tool usage
was demonstrated for the audience through live sessions during the confer-
ence [110].

CHAPTER 1. INTRODUCTION 9

– Text Generation from Business Process Models - Paper that document the main
challenges associated with generating natural language frommachine artifacts,
presents two types of architectures for developing NLG systems and describes
several systems which are based on these architectures, specially regarding
business process models [109].

– Automatic Synchronization of BPMDescription Artifacts: Methods and Appli-
cations - Paper that describes a theorical methodology for text generation from
process models and vice-versa. It presents the main concepts for developing a
round-trip approach [98].

1.5 Methodology Applied

The structure of this methodology is composed by a four step approach and is illus-
trated in Figure 1.2. By following this methodology, the contributions of the research
conducted in this master thesis follows the paradigm of design science, as defined by
Hevner [45]. The steps are detailed as follows:

• Test Data Sets (Step 1) The first step was to collect initial test data, consisting of
several process models and natural language process specifications. They provided
insights on how to translate business process models to textual descriptions and
vice-versa.

• Syntactic and Semantic Patterns (Step 2) by analyzing the linguistic patterns we
were able tomap text constructions to their correspondingmodeling fragments. This
also revealed issues regarding the quality of the syntax parse and the text itself. We
systematically categorized these issues and developed a conceptual solution strat-
egy.

• Transformation Rules (Step 3) To effectively mitigate the detected issues, appro-
priate transformation heuristics were defined and refined iteratively. The rules were
then implemented in our research prototype to assess the output.

• Evaluation (Steps 4 and 5) against several process models (detailed below) pro-
viding important information about the framework’s behavior. The gathered infor-
mation could then be used in another iteration to refine or discover new patterns and
rules and to improve the performance regarding the test data set.

CHAPTER 1. INTRODUCTION 10

Figure 1.2: Research methodology underlying this master thesis.

The research methodology applied to evaluate the proposed solution was based on the
development of a prototype which serve as a proof-of-concept, specification of experi-
ments involving qualitative and quantitative researches [134]. The research methodology
is detailed below:

1. Basically we conducted a two-step evaluation. At first, artificial data were gener-
ated, which represented a control experiment. This experiment was composed by
exclusively made-up models1 (written by the authors) to stress specific conditions
(scenarios) that should be covered by our solution. The framework was designed
to support multiple languages, thus the set of process models were written in both
English and Portuguese. During this evaluation, two analysis were conducted:

• The output texts were compared with the models used as inputs, a set of text
metrics to investigate in how far the generated texts are comparable to manu-
ally created texts and if the textual description is capable of representing the
same process knowledge as a business process model;

• After asserting the texts were suitable, several textual operations (e.g., add,
change and remove text fragments) were applied to output texts. Two snap-
shots were taken from the original process model, the first before submitting
the changes and the other after the synchronization of textual changes. The
snapshots were then compared to the textual operations to investigate whether

1This set of process models (artificial data) are available in the Appendix (Section A)

CHAPTER 1. INTRODUCTION 11

the framework was capable of correctly mapping text-based changes to model-
based changes.

After the initial evaluation with artificial data, real data was used through a second
set of business process models2 gathered from universities and from companies to
stress real scenarios.

2. Afterwards, some research questions were defined to serve as a guide during the
execution of the experiment, which had two main objectives: validate and evaluate
the natural language text produced as the framework output when given a process
model instance as input. Basically, it was an exploratory research to investigate
weather the generated text is capable of transmitting the same knowledge as com-
pared with a Business Process Model. It was also possible for the participant to
leave comments (i.e., feedback) about the generated text structures.

3. Finally, a third experiment was run to evaluate the synchronization components
through editions made to the original text and asking the business process expert to
evaluate whether the changes were reflected correctly to the original process model.
During this experiment, the participant was asked to leave his opinion (i.e., feed-
back) about the synchronization process.

The results of this master thesis are twofold. On one hand, algorithms were developed
to generate texts from process models, to detect changes made to the generated text, and
to allow automatic updating of the original model considering these detected changes. On
the other hand, these algorithmswere packaged in a flexible tool (i.e., framework), capable
of producing texts from process models written in different languages, allowing automatic
update of the original model according to changes in the text.

1.6 Work Structure

The remainder of this work is structured as follows.

Chapter 1 corresponds to this introduction. Chapter 2 presents the background, includ-
ing business process concepts, the BPMN notation and some strategies used to develop
natural language generation systems. Some challenges in the context of BPMN model
generation are illustrated for both, NLG and NLP research areas. Chapter 3 presents the

2Due to copyright reasons, the whole set is not available. Nevertheless, some process models are avail-
able in the Appendix (Section A)

CHAPTER 1. INTRODUCTION 12

implementation of the proposed round-trip technique (Figure 1.1). Chapter 4 corre-
sponds to the evaluation of the methods developed and implemented within the language-
independent framework.

Chapter 5 presents related articles, which describe approaches similar to the one pres-
ented in this master thesis. These approaches are explained and their differences are high-
lighted. Finally, Chapter 6 presents the conclusions, proposals for future work and high-
lights this research’s limitations.

2. Theoretical Foundation

This master thesis covers an interdisciplinary topic. It relies on concepts and research
in the areas of Conceptual Modeling, Natural Language Generation (NLG), Natural Lan-
guage Processing (NLP) and Business Process Modeling Notation (BPMN). This section
presents some business process concepts, the BPMN notation and some strategies used
to develop natural language generation systems. These strategies are generic and widely
used for the development of tools aimed at dealing with manipulation of texts in natural
language. Afterwards, some steps in the context of BPMN model generation are illus-
trated for both, NLG and NLP research areas. These steps are addressed by this master
thesis and explained in details in Chapter 3.

2.1 Business Process and the BPMN notation

The need for well defined and flexible business process is growing in many organi-
zations [50]. Companies have to put considerable effort into the design, implementation,
execution, monitoring, and evaluation of processes and the corresponding data. Business
Process Management Systems (BPMS) are often employed to provide the necessary soft-
ware support for those activities. Weske defined BPMS as “A generic software system that
is driven by explicit process representations to coordinate the enactment of business pro-
cesses” [137]. Such explicit representations are conceptual models, which are the result
of the design phase as depicted in the BPM life-cycle. In the area of BPM, different kinds
of conceptual models are required, including representations of functions, data, organi-
zation, system landscapes, and perspective process models [113]. Such process models
provide an abstracted representation of several business process instances which are the
interactions within a company conducted to create value. It includes activities conducted
by humans and/or software systems and is able to show interdependencies.

There are several notations tomodel business process, such as: UMLAD (UMLActiv-

13

CHAPTER 2. THEORETICAL FOUNDATION 14

ity Diagrams) [125], BPDM (Business Process Definition Metamodel) [88], EPC (Event-
driven Process Chain) [114], BPQL (Business Process Query Language) [88], BPMN
(Business Process Modeleling Notation) [88] and YAWL (Yet Another Workflow Lan-
guage) [127]. These languages define the meta-model (Figure 2.1), i.e., the rules and
structure the model has to follow. Due to the existence of these several notations, a stan-
dard is necessary to model company business processes [50].

Figure 2.1: Level of Abstractions for process model notations [137].

For the approach developed in this research we decided to use BPMN 2.01 as language
or metamodel for the resulting process models [88]. BPMN is an official standard sup-
ported by the Object Management Group (OMG) for process modeling, providing rich
expression capabilities. Furthermore, an evaluation of several notations was conducted
by Ko et al. [50], which pointed out the BPMN as the most used one. They also depict
the trend BPMN becomes the de facto standard for business process modeling.

The Business Process Model Notation (BPMN) is a graphic process modeling lan-
guage used for the specification of business process and has a big set of specific symbols

1For more detalis, refer to: http://www.omg.org/spec/BPMN/2.0/

CHAPTER 2. THEORETICAL FOUNDATION 15

for the modeling task. Currently, the BPMN is in its 2.0 version, published by OMG [88].
With the introduction of BPMN 2.0, each element of a BPMN process diagram has clearly
defined semantics. The BMPNworks as a proxy between all the organization’s areas, low-
ering the distance between the specification and the execution of the process [62].

In general, graphic notations are easier for business users to understand and use. Mod-
els can make explicit several process’s patterns, flaws in process cycles and even bottle-
necks or deadlocks. But, it is required that all the people involved with the process model
have the necessary knowledge about the model notation. Besides, it is important to de-
fine a set of business process models samples that could be used as guides for the process
model developers [62].

Figure 2.2 depicts all symbols from the BPMN 2.0 specification. As can be observed,
the symbol set of BPMN covers four types of elements: flow objects (activities, events,
gateways), swimlanes (pools and lanes), artifacts (e.g., data objects and annotations) and
connecting objects (sequence and message flow associations) [88]. This master thesis
works with the core subset of the BPMN symbols. This subset is depicted in Figure 2.3,
and explained below.

Figure 2.2: BPMN elements summary, adapted from Michele and Alberto [17].

A Task element is an atomic Activity within the process flow. Whenever a group of

CHAPTER 2. THEORETICAL FOUNDATION 16

Figure 2.3: Considered subset of BPMN symbols, adapted fromMichele and Alberto [17].

activities is combined or the reuse of a process fragment is intended, a Subprocess can be
used instead of a Task. A Subprocess can be collapsed and expanded (hence the plus sign
at the bottom) to either show or hide its details.

Gateways enable the process flow to be split and joined. An exclusive Gateway (or
XORGateway) is used to model a decision. Out of all its incoming or outgoing edges only
one path will be selected. An event-based exclusive Gateway shows the same behavior,
but requires that all of its successors are events. The semantics of a parallel Gateway are
different as it will activate all of its outgoing paths or requires that all of its incoming
paths are activated. Thus, it can be used to model concurrent behavior. The inclusive
Gateway (also OR Gateway) can activate 1-n of its in/outgoing edges or requires them to
be activated in order to proceed. It is thus more versatile, but also more complex [82].

Event nodes can be used to denote the start or end of a process. Additionally, interme-
diate Events can be used within the process flow to make clear that the process will halt
and wait for the expected Event to occur. The nature of the Event can be signified by ad-
ditional symbols, e.g., for Messages, Time or Exceptions as shown in Figure 2.2. BPMN
specifies 13 different event types which are fully listed in the BPMN2.0 specification [88].

CHAPTER 2. THEORETICAL FOUNDATION 17

Lastly, Pools and Lanes represent actors or roles participating in the process. A Pool
can represent a human, organization, or software system involved in a business process.
While a Pool is used to show the boundary of an organization and to determine the involved
process participants, a Lane can be used to partition the Pool and show the different process
participants within that body. Again, this could be different individual, organizational
units or software systems. Whenever the behavior of an involved participant is supposed
to be left unspecified, a Black Box Pool can be used. This way other process participants
and the interactions with them can be shown in a diagram without the need to specify their
behavior directly.

BPMN distinguishes between three types of edges or Connecting Objects. Sequence
Flows are used to connect Flow Objects within the same Pool. Message Flows have to be
used whenever an edge crosses the boundary of a Pool. Therefore, it can be used to visual-
ize the interactions between several process participants in a Collaboration Diagram [17].
Associations are used to connect Artifacts to Flows or Connecting Objects.

According to zur Muehlen [87], only few BPMN diagrams use more than 15 differ-
ent elements. The subset we defined, presented in Figure 2.3, covers all these 15 ele-
ments. Therefore, we are confident that the required elements for the majority of BPM
projects can be provided by our transformation procedure as it covers the most important
and widely used elements [87].

Figure 2.4 depicts an example of a business process in a hotel represented as a BPMN
model. It describes how an order is handled. The process has four lanes. The activities
performed by the different actors are depicted as boxes with round corners, the diamond
shaped gateways define the routing behavior. The meaning of the symbols inside the
diamond are: plus “+”: parallel execution; a circle: inclusive choice (one ormore branches
may be executed); and, a cross: exclusive choice (only one branch can be executed). The
process can be described as follows:

CHAPTER 2. THEORETICAL FOUNDATION 18

Figure 2.4: Business Process Model sample using the BPMN notation [62].

The process starts when the Room-Service Manager takes

down an order. Afterwards, three streams of action occurs

in parallel:

• In case alcoholic beverages are ordered, the Room-Service

Manager gives order to the sommelier. Afterwards, one

or more of the following paths are executed:

– The Sommelier fetches wine from the cellar.

– The Sommelier prepares the alcoholic beverages.

• The Room-Service Manager submits the order ticket to the

kitchen. Subsequently, the Kitchen prepares the meal.

• The Room-Service Manager assigns the order to the Waiter.

Then, the Waiter readies the cart.

As long as all the streams of actions were executed, the

Waiter delivers to the guest’s room. Afterwards, the Waiter

CHAPTER 2. THEORETICAL FOUNDATION 19

returns to the room-service. Subsequently, he debits from

the guest’s account. Finally, the process is finished.

In order to be effective, the notation must be known and well understood by business
executives, specialists, analysts, and users. Without enough knowledge about the used
notation, wrong decisions may be taken due to misunderstandings. This problem can be
solved by specialized systems which can automatize the interpretation of business process
models. For example, there are works based on an interface that is capable of reading a
model (written in English) and extract all the relevant business information, in the same
way a human would [110, 62]. The information extracted is then used for generating pro-
cess textual description, which is an alternative process knowledge representation used by
domain experts. This kind of representation is prefarable to discuss the concepts expressed
by conceputal models [15]. Nevertheless, these works are not capable of supporting mul-
tiple languages nor generating process models from texts. Thus, it is this master thesis’s
goal to fill this research gap. Section 5 provides a detailed analysis of several works related
to this thesis.

2.2 NLG

This section presents Natural Language Generation (NLG) concepts, which are spe-
cific to the development of NLG systems. This master thesis proposes a framework that
is capable of generating natural language text from business process models. All the NLG
algorithms that were deployed within this framework were built based on the concepts
presented in this section. In particular, regarding the text generation from a BPMN pro-
cess model, we have implemented the data structures presented in Section 2.2.1, we have
applied the technique of natural language generation presented in Section 2.2.2 and gen-
erated the sequence flow described in Section 2.2.3.1.

Several techniques are proposed in the literature to generate natural language text, but
only NLG is considered as a true natural language generation technique [20]. Without
NLG, it would not be possible to generate natural language text from a process model
(i.e., machine artifact). After presenting the techniques for translating machine artifacts,
we present the proposed steps necessary for building NLG systems.

CHAPTER 2. THEORETICAL FOUNDATION 20

Figure 2.5: (a) A graph and its fragments, (b) a RPST that represents the graph depicted
in (a).

2.2.1Intermediate Structures Used in NLG

RPST - Refined Process Structure Tree. It is a parse tree containing a hierarchy
of subgraphs derived from the original model. The RPST is based on the observation
that every work-flow graph can be decomposed into a hierarchy of logically independent
subgraphs having a single entry and single exit. Such subgraphs with a single entry and a
single exit are referred to as fragments. In a RPST, any two of these fragments are either
nested or disjoint. The resulting hierarchy can be shown as a tree where the root is the
entire tree and the leaves are fragments with a single arc [95, 131]. Figure 2.5 depicts a
simple RPST tree and its according graph.

In total, wemay encounter four different fragment classes: trivial fragments (T), bonds
(B), polygons (P) and rigids (R). Trivial fragments consist of two nodes connected with a
single arc. A bond represents a set of fragments sharing two common nodes. In BPMN
process models, this generally applies for split and join gateways, including more complex
split and join structures such as loops. Polygons capture sequences of other fragments.
Hence, any sequence in a process model is reflected by an according polygon fragment.
If a fragment cannot be assigned to one of the latter classes, it is categorized as a rigid.
Although the original version of the RPST was based on graphs having only a single entry
and exit point, the technique can be easily extended to compute a RPST for arbitrary pro-
cess models. Figure 2.6 and Figure 2.7 illustrate the concepts using an abstracted version
of the hotel process and its corresponding RPST.

DsynT - Deep Syntactic Tree. It is a dependency representation introduced in the
context of theMeaning Text Theory [74]. In a deep-syntactic tree each node is labeled with
a semantically full lexeme, meaning that lexemes such as conjunctions or auxiliary verbs
are excluded. Each lexeme carries grammatical meta information, which includes voice
and tense of verbs or number and definiteness of nouns. The advantages of deep-syntactic

CHAPTER 2. THEORETICAL FOUNDATION 21

Figure 2.6: Abstract version (Graph) from the process model depicted in Figure 2.4.

Figure 2.7: Corresponding RPST from the abstract process depicted in Figure 2.6.

CHAPTER 2. THEORETICAL FOUNDATION 22

Figure 2.8: Simple example of a DSynT Tree, based on the sentence ’The room-service
manager takes down the order.’

trees are the rich but still manageable representation of sentences and the existence of of-
the-shelf surface realizers which take deep-syntactic representations as input and directly
transform it into a grammatically correct sentence.

Using the annotation from the RPST, it can be directly mapped to a DSynT. For illus-
trating this procedure, consider the first activity from the example process (Figure 2.4).
Using the action take down as the main verb, the role room-service manager as subject
and the business object order as object, we can derive the DSynT depicted in Figure 2.8
representing the sentence The room-service manager takes down the order.

2.2.2Techniques for Translating Machine Artifacts

There are three main techniques for translating machine artifacts to text (e.g., translate
a business process model to a human-readable text in natural language): non-language
techniques, mail-merge techniques and language techniques [20].

The simplest techniques, normally termed non-language techniques, are based on
canonical texts or predefined templates. In the canonical text technique, the input data
is directly mapped to a predefined sentence. For example, a system translating data on
climate prediction to a text in natural language could use the sentence “The weather will
be good today.” to represent a warm and sunny day. The predefined template technique
inserts some extra information in the predefined sentence. For example, in the template
“Today there is an X% probability of rain”, the X could be replaced by the probability of
precipitation retrieved from a database [62]. These types of techniques are not considered
truly language, since manipulation of the text is based on manipulating character within a
sentence previously defined [104].

CHAPTER 2. THEORETICAL FOUNDATION 23

Themail-merge techniques aremore complex than the non-language techniques. They
are found in Microsoft Word and other popular text editors. In this case, there are tech-
niques that insert data into predefined spaces in a standard document, as well as techniques
which are essentially programming languages allowing the output text to vary arbitrarily,
according to the input data [20]. As an example, consider a Word document that has its
output according to the content of the file used as a data source (e.g., an Excel spreadsheet).
Each predefined space, like CONTACT_FIRSTNAME and CONTACT_LASTNAMEwill be
replaced by the respective value defined in the file used as input. Suppose that the input
file is some Excel sheet with the following columns: FirstName, LastName etc. Through
the use of mail-merge techniques, the data of each column can be mapped to the prede-
fined spaces in the Word document, according to the mapping defined by the user (e.g.,
FirstName column corresponds/maps to CONTACT_FIRSTNAME).

Language techniques, or real generation of natural language, use intermediate struc-
tures to represent the text in more details. These structures normally specify the main
lexemes for each sentence. Lexeme is a set of words with the same morphological class
that are distributed in a complementary form and differ morphological from each other
only by flexion and suffixes. The words that make up a lexeme are called inflections of
lexeme [73]. For example, the words singer and sing do not make up a lexeme because
they do not belong to the same morphological class, noun and verb, respectively. On the
other hand, the words singer and singers compose a lexeme because they belong to the
same morphological class (nouns), and they differ only by suffixes.

The core of language techniques, is the use of an intermediate structure to store the
messages before they are transformed into natural language sentences. The advantage of
this procedure is the significant gain in maintenance and flexibility. In a system based
on templates, each template must be manually modified when a different output text is
required.

In a language-based approach, the generated text can be changed by setting a different
value to a parameter in the intermediate structure. For example, the sentence “The train
will depart soon” can be easily transformed into “The train is departing now” bymodifying
the main verb time of the intermediate structure [62].

Approaches based on templates and canonical text are not considered as good as lin-
guistic approaches, in maintenance terms, quality of the output text and variation of the
text. Systems using templates based approaches are more difficult to maintain and mod-
ify, and produce outputs with inferior quality than NLG (Natural Language Generation)
systems [20]. Systems using a non-language approach are not able to incorporate generic

CHAPTER 2. THEORETICAL FOUNDATION 24

language aspects [11].

On the other hand, approaches based on templates and canonical text also have ad-
vantages. Systems based on templates require less time to be developed and do not need
to be fully complete for a correct execution. Besides, they may be extended by insert-
ing new templates. Another advantage is the flexible adaptation to a new domain. When
applying a new domain to the system based on templates, many of the templates should
be rewritten. However, the mechanism used to generate the text, will require little or
no modification. The fact that templates can be manually specified is advantageous over
NLG only when good linguistic rules are not yet available or have very specific conditions
for their use [126].

As a consequence, Reiter and Mellish propose a cost-benefit analysis, seeking an ap-
proach that makes use of advantages and eliminates disadvantages of other works [35,
106]. As a result, many systems for natural language generation use hybrid approaches
where linguistic techniques are combined with canonical texts and templates [107].

2.2.3Necessary Steps to Develop Natural Language Generation Systems

This section presents two sets of steps (i.e., processes) used to develop systems that
generates natural language from machine artifacts.

2.2.3.1Pipeline Architecture

Many natural language generation systems follow a pipeline approach (Figure 2.9)
consisting of three main steps described as follows [27, 20]:

• Text Planning: This task converts the system input to the specific kind of data
objects (or “messages”) that serves as a basis for the subsequent generation tasks.
Furthermore, it is specified in which order this information will be conveyed and
the structure of the output text. The result is a text plan, often in the form of a
tree structure representing the order and grouping of the messages, and the relations
between them.

• Sentence Planning: This task chooses the right words to express the input
information. Often, a concept can be expressed using different words or phrases.
So, in the sentence planning, the lexicalization procedure is used to choose the most
appropriate way in the given context to express words or phrases. If applicable, mes-
sages are aggregated and pronouns are introduced in order to obtain variety. The
sentence planning also can use the Aggregation procedure to decide which informa-

CHAPTER 2. THEORETICAL FOUNDATION 25

Figure 2.9: NLG pipeline approach, defined by Reiter and Dale.

tion to put in one sentence. Pieces of information that form separate input messages
may be joined together and expressed using one sentence which, for instance, con-
tains a conjunction or a relative clause. Referring expression generation can also be
used to create phrases to identify domain entities. This involves choosing the type
of expression (e.g., a pronoun or a definite description) and in the case of definite
descriptions, choosing the properties to include in the description.

• Sentence Realization: This task creates grammatical sentences. This in-
volves the application of syntactic and morphological rules that determine aspects
like word order and agreement.

In general, the text planning tasks (step 1) are language-independent but domain-
specific, whereas sentence realization (step 3) is language-specific, but can in principle
be done in a domain independent fashion. This difference in domain-dependence of the
different tasks largely explains why reusable software packages exist for linguistic real-
ization, but not for document planning. The tasks associated with sentence planning (step
2) require both domain and language-specific knowledge. For instance, the generation of
referring expressions requires knowledge about the application domain (e.g., information
about domain objects and their properties) and about the application language (e.g., the
syntactic properties of modifiers expressing certain properties).

The first and second step of the pipeline can be further decomposed into several micro
steps as follows (Figure 2.10).

• Text Planning: The text planning step can be decomposed into three steps. The
first step (Linguist Information Extraction) is responsible for extracting the linguist
information (e.g., words of labels) from the machine artifact received as input by
the system (e.g., a business process model written using BPMN (Business Process
Model Notation) [50]). In particular, the information is extracted and organized in
a graph to maintain the information’s dependencies and hierarchy. The second step
(Annotated RPSTGeneration) is responsible for storing the linguistic information in
RPST (Refined Process Structure Tree, section 2.2.1) tree nodes [131]. In particular,
it reads the graph structure created in the previously step and transforms it in a RPST
tree. Finally, the third step (Text Structuring) is responsible for adding structuring

CHAPTER 2. THEORETICAL FOUNDATION 26

Figure 2.10: Extended pipeline approach.

data inside the nodes. For example, the addition of paragraphs, text indentation and
markers, allowing the text to be shown in a fashion format and improving the text
quality and readability. Basically, the RPST tree nodes are traversed and their struc-
turing properties are set. Furthermore, it is specified in which order this information
will be conveyed.

• Sentence Planning: The sentence planning phase can be decomposed into
two steps. The first step (DSynT Message Generation) transforms the previously
created RPST tree into a list of intermediate messages. In this step, the linguistic
information of the model is not directed mapped to the final text, rather to a concep-
tual representation that is still suitable for changes. In particular, each sentence is
stored into a DSynt tree. Afterwards, the second step (Message Refinement) is trig-
gered. This step is needed to perform the message aggregation task (e.g., aggregate
correlated sentences into one bigger message separated by coma).

2.2.3.2Data-to-Text Architecture

The pipeline proposed by Reiter and Dale [20] is suitable for most NLG systems.
Nevertheless, there are systems that produces text from non-linguistic input data. In this
case, the linguistic information extraction executed during the first step (Text Planning)
of the pipeline process (Figure 2.9) is not required. These systems are called data-to-text
systems. The information needed have to be extracted from raw data, which is typically
numerical, e.g., sensor data, graphics and event logs. The data is extracted through data
analysis aligned with linguistic processing. To address such challenge, Reiter and Dale
proposed a new architecture (data-to-text architecture), which can be considered as an
extended version of the pipeline architecture [105]. The extended architecture is suit-
able for many data-to-text systems and is being used, e.g., in the BabyTalk project which
employ NLG techniques to provide decision support in a Neonatal Intensive Care Unit
(NICU) [36].

As patient care standards improve, the demand for continuous monitoring and data
collection is on the increase in these units. Therefore, medical staff need to process large

CHAPTER 2. THEORETICAL FOUNDATION 27

quantities of information in order to ensure that clinical decisions are maximally bene-
ficial to an infant. The systems developed by the BabyTalk project aim to reduce this
information overload through the use of NLG techniques. Moreover, they target different
user groups, namely nurses, doctors and family members or friends. These groups have
different information requirements and may also have different levels of expertise. The
main source of data is non-linguistic (raw data), through graphics and tables.

Perhaps the biggest difference between data-to-text systems and NLG systems whose
input is a knowledge base is that data-to-text systems receive raw data (non-linguistic
information) and must analyze and interpret their input data, as well as decide how to lin-
guistically communicate it. For example, it must interpret a heart rate of 80 (e.g., through
image processing) per minute and decide weather it is within an acceptable frame and
communicate with a natural language sentence as “The patient heart rate is within an
acceptable frame”.

The data-to-text architecture is composed by a 4-stage pipeline (Figure 2.11) which
are described as follows.

1. Signal Analysis: This step analyzes numerical and other input data, looking for
patterns and trends.

2. Data Interpretation: This step identifies more complex (and domain-specific) mes-
sages from the patterns and trends detected in Signal Analysis and also identifies
causal and other relations between messages.

3. Document Planning: This step decides which of the above messages should be
mentioned in the generated text, and creates a document and theoretical structure
around these messages.

4. Micro-planning and Realization: This step creates the text that communicates the
document plan.

2.2.4NLG Steps in the context of BPMN text generation

As described in Section 2.2.3.1, there is a set of steps for the automatic generation of
text from process models. Table 2.1 shows a summarized view of these steps and some
authors that published papers about the specific difficulties related to it. This work con-
siders these steps which are based on the three-step approach [27], consisting of activities
related to automatic text generation, which are presented as follows.

CHAPTER 2. THEORETICAL FOUNDATION 28

Figure 2.11: Extended pipeline (data-to-text) architecture.

CHAPTER 2. THEORETICAL FOUNDATION 29

Table 2.1: Steps to the automatic text generation (adapted from Leopold [62])
Macro and substeps of NLG approach

1 - Text Planning
a. Extraction of linguistics information [95].
b. Linearization of the model [131].
c. Structuring the text [83].
2 - Sentence Planning
a. Lexicalization [21].
b. Messages refinement [49]
3 - Message Realization [59, 11]

Regarding Text Planning, there are three great steps related to the activities involved.

• Extract linguistic information from elements in the processmodel. For example,
the activity Receive order has to be divided automatically into action receive and in
business object order. Without this separation, it would not be clear which of the
two words define the verb representing the action of the activity. The analysis of
labels (or names) of process models becomes even more complicated due to the
small size of process models’ labels [26].

• Linearization of process models into a sequence of sentences. Process models
rarely consist of only one sequence of tasks. They also include parallel branches
and decision points.

• Structure and format text. Natural language text are structured in order to facili-
tate reading. Some structures, such as paragraphs and markers, must also be present
in the natural language representation of the process model.

The Sentence Planning step encompasses the tasks of lexicalization and refinement of
messages and has the following challenges:

• The appearance of lexicalization refers to the mapping of BPMN process mod-
els to specific words. In this case, the challenge is the need for integration of lan-
guage information extracted from elements of process models with control struc-
tures, division and bonding so that the process would be described in an easily and
understandable manner.

CHAPTER 2. THEORETICAL FOUNDATION 30

• The aspect of message refinement refers to the construction of the text. The
related challenge involves the aggregation of messages, as the introduction of refer-
ring expressions (for example, pronouns) and also the insertion of discourse mark-
ers, such as, thereafter and subsequently. In order to consolidate the messages in
a proper way, the choice of aggregation have to be first identified and then decide
which can be applied to improve the quality of the text. The introduction of terms
of reference requires the automatic recognition of entity types. For example, the ac-
tor kitchen should be referenced by the pronoun it while the actor waiter should be
referenced by the pronoun he. The insertion of discourse markers2 should increase
the readability and the variety of text. Examples of these markers are: “afterwards”,
“As a consequence”, “In parallel”.

In the context of Messages Realization, the activity to generate grammatically correct
sentences is performed and it includes, among other tasks:

• Determination of an appropriate order of words;

• Classification of the gender;

• Introduction of articles;

• Transformation of the words in upper-case or lower-case according to the context
in which they operate (e.g., beginning of a sentence, noun etc.).

In addition to the core activities of natural language generation, flexibility is also an
important resource. As we do not expect the input models to be defined according to a
specific agreement, we have to deal with different characteristics of each artifact used as
input. Diverse scenarios should be covered with different implications for text output. For
example, if a model uses lanes and consequently provides a description of the actors, the
sentence can be represented in the active voice, e.g., The manager checks the system. On
the other hand, if actors are not defined for the specified task, the description should come
in passive voice, e.g., The system is verified.

2.3 NLP

Methods in the area of Computational Linguistics and Natural Language Processing,
which are a branch of artificial intelligence, try to analyze and extract useful information

2Discourse markers, in this context, are words or expressions used for explicitly correlate text’s
sentences.

CHAPTER 2. THEORETICAL FOUNDATION 31

from natural language texts or speech. Therefore, it is concerned, with the recognition
and synthesis of speech in natural languages (e.g., English) [48]. An exemplary area of
application is sentiment analysis, where the goal is to automatically determine the attitude
or opinion towards a product or company from online articles [92].

The field of Natural Language Processing (NLP) aims to convert human language
into a formal representation that is easy for computers to manipulate, i.e., the ultimate
goal of research on Natural Language Processing is to parse and understand language.
Automatic text, or document, retrieval has recently become a topic of interest for those
working in NLP. Current end applications include information extraction, machine trans-
lation, summarization, search and human-computer interfaces. Researchers have taken a
divide and conquer approach and identified several sub-tasks useful for application de-
velopment and analysis. These range from the syntactic, such as part-of-speech tagging,
chunking and parsing, to the semantic, such as wordsense disambiguation, semantic-role
labeling (named entity extraction) and anaphora resolution. These techniques can be used
altogether or combined within a specific set to enable natural language processing of texts
and documents [71, 97].

This section presents NLP concepts, which are specific to the development of algo-
rithms that can process and parse natural language texts to gather relevant data. The tech-
niques described were essential to the development of the round-trip approach described
in details in Section 3. As mentioned earlier in Section 2.2, this master thesis presents a
framework that can generate natural language text from business process models through
NLG. Based on the generated text, it is possible to navigate in the opposite direction. In
other words, to generate a business process model from the natural language text. In the
context of this master thesis, NLP techniques were implemented by the framework to en-
able the extraction and parsing of natural language texts, in order to gather business process
data and present this data through a machine artifact format (e.g., BPMN process model).
In total, four standard NLP tasks are of vital importance to achieve this goal and will be
described in more detail in the upcoming subsections. In Section 3.3, these techniques are
referenced in the context of business process, explaining the specific strategies used along
with each technique to extract the information from the business process descriptions.

2.3.1Syntax Parsing: Part-Of-Speech Tagging (POS)

NLP has on intermediate tasks that make sense of some of the structure inherent in
language without requiring complete TAGGING understanding. One such task is part-of-
speech tagging, or simply tugging. Tagging is the task of labeling (or tagging) eachword in

CHAPTER 2. THEORETICAL FOUNDATION 32

a sentence with its appropriate part of speech. It aims at labeling each word with a unique
tag that indicates its syntactic role, e.g., plural noun, adverb. For illustration purpose,
consider the sentence “The representative put chairs on the table.”. After applying POS
technique, we would have the following tags for the words: The(AT); representative(NN);
put(VBD); chairs(NNS); on(IN); the(AT); table(NN).. The part-of-speech tags assigned
to each word are described in table 2.2 and follows the Brown/Penn tag sets [72].

Table 2.2: Some part-of-speech tags frequently used for tagging English
TAG -> PART-OF-SPEECH

AT -> article
BEZ -> the word is
IN -> preposition
JJ -> adjective
JJR -> comparative adjective
MD -> modal
NN -> singular or mass noun
NNP -> singular proper noun
NNS -> plural noun
PERIOD -> .:?!
PN -> personal pronoun
RB -> adverb
RBR -> comparative adverb
TO -> the word to
VB -> verb, base form
VBD -> verb, past tense
VBG -> verb, present particple, Gerund
VBN -> verb, past participle
VBP -> verb non-3rd person singular present
VBZ -> verb, 3rd singular present
WDT -> wh- determiner (what, which)

2.3.2Tokenization

Normally, an early step of processing is to divide the input text into units TOKENS
called tokens where each is either a word or something else like a number or a punctuation
mark. This process is referred to as tokenization. The main strategy to split sentences into
an array of tokens is to use the occurrence of white-space (a space or tab or the beginning
of a new line between words) as a delimiter to distinguish words within the sentence. But

CHAPTER 2. THEORETICAL FOUNDATION 33

even this signal is not necessarily reliable because words are not always surrounded by
white space. Often punctuation marks attach to words, such as commas, semicolons, and
periods (full stops) [72].

At first, it seems easy to remove punctuation marks from word tokens, but the treat-
ment of punctuation may vary greatly depending on what we want to extract from the
natural language text used as input. For instance, depending on the primary objective,
it may be important to keep sentence boundaries [72]. In other cases, sentence-internal
punctuation can be just stripped out. Nevertheless, recent work has emphasized the in-
formation contained in all punctuation [65]. No matter how imperfect a representation is,
punctuation marks like commas and dashes give some clues about the macro structure of
the text. For example, punctuation marks like period are often end of sentence punctua-
tion marks but they also can mark an abbreviation such as in ”etc.”. These abbreviation
periods presumably should remain as part of the word, and in some cases keeping them
might be important so that, e.g., we can distinguish “Wash.”, an abbreviation for the state
of “Washington”, from the capitalized form of the verb “Wash”. Note especially that when
an abbreviation like “etc.” appears at the end of the sentence, then only one period occurs,
but it serves both functions of the period, simultaneously. Besides periods, there are also
other challenges while defining the best strategy for the Tokenization phase (e.g., single
apostrophes, hyphenation, homograph, word segmentation, etc.) [71, 72].

2.3.3Stop Words Removal

Sometimes, some extremely common words which would appear to be of little value
in helping select documents matching a user need are excluded from the vocabulary en-
tirely. These words are called stop words, which are filtered out before or after processing
of natural language data (text). Any group of words can be chosen as the stop words for
a given purpose. The general strategy for determining a stop list is to sort the terms by
collection frequency (the total number of times each term appears in the document col-
lection), and then to take the most frequent terms, often hand-filtered for their semantic
content relative to the domain of the documents being indexed, as a stop list, the members
of which are then discarded during indexing. Using a stop list significantly reduces the
number of postings that a system has to store. The reason why stop words are critical to
many applications is that, if we remove the words that are very commonly used in a given
language, we can focus on the important words instead. Keyword searches for terms like
the and by do not seem very useful. However, this is not true for phrase searches. The
phrase query “President of the United States”, which contains two stop words, is more
precise than President AND “United States”. The meaning of flights to London is likely

CHAPTER 2. THEORETICAL FOUNDATION 34

to be lost if the word to is stopped out [71, 72].

2.3.4Anaphora Resolution

Another problem which has to be addressed to produce conceptual models from text
is the resolution of anaphoric references. Anaphoras include possessive pronouns (e.g.,
“my”, “your”, “her”), personal pronouns (e.g., “I”, “you”, “she”), certain determiners
(“this”, “that”), relative pronouns (“who”, “which”) or phrases describing the object un-
der investigation with different expressions (e.g., “Steve Jobs”, the “CEO of Apple”). A
simple algorithm for the resolution of pronouns is proposed by JR Hobbs [46]. It was later
extended by Niyu Ge et al. [37].

Jurafsky and Martin also mention further possibilities of restricting the selection pro-
cess through the usage of parallelisms, verb semantics, and selectional restrictions [48].
Examples for implementations of anaphoric reference resolution algorithms are the Gui-
TAR Framework [94], BART8 [133] or the Reconcile framework [122]. Although these
libraries are written in Java, they require a special XML-Format as input and are not seam-
lessly usable with the output provided by our framework.

Section 3.3 describes how anaphoric references are tackled within the context of busi-
ness process model generation.

2.3.5NLP Steps in the context of BPMN text generation

Mapping natural language text to process models can be assigned to four broad cat-
egories: syntactic leeway; atomicity; relevance; and, referencing. Table 2.3 gives an
overview of the difficulties (bold font) and the respective approaches addressing them
(standard font).

CHAPTER 2. THEORETICAL FOUNDATION 35

Table 2.3: Steps for Mapping Natural Language Text to Process Models.
Challenges

1 - Syntactic Leeway
a. Active-Passive [1].
b. Rewording/Order [142, 31].
c. Implicit Conditions [39, 40].
2 - Atomicity
a. Complex Sentences [31, 66].
b. Action Split over Sentences [118]
c. Relative Clauses [66]
3 - Relevance
a. Relative Clause Importance [66].
b. Example Sentences [52]
c. Meta-Sentences [66]
4 - Referencing
a. Anaphora [118, 23].
b. Textual Links [30]
c. End-of-block Recognition [66, 52]

Syntactic Leeway relates to the mismatch between the semantic and syntactic layer of a
text. For example, the grammatical role of an actor differs for active and passive sentences.
In active sentences, such as “The clerk enters the data”, the actor clerk is a subject. In pas-
sive sentences, by contrast, the actor is often only mentioned in the prepositional phrase.
As an example, consider the passive version of the former sentence “The data is entered
by a clerk ”. Another problem relates to implicit conditions as in the sentence “For new
patients, a patient file is created”. This sentence implies that a new file is only created for
new patients. However, the automated detection of such implicit conditions is not trivial.

Atomicity deals with the question of which sentences correspond to process model
activities and which sentences provide additional information. Hence, automated tech-
niques must, for instance, detect whether a sentence represents an activity or rather a meta-
description of the control flow. In addition, a techniques must take into consideration that
a single activity may correspond to multiple sentences and vice-versa.

Relevance relates to the challenge of detecting whether a sentence is relevant for the
corresponding process model or not. The problem is that many natural language texts
contain example sentences for illustrating the discourse. As an example, consider the
sentence “The edit function can be used to correct errors”.

CHAPTER 2. THEORETICAL FOUNDATION 36

Finally, Referencing addresses the question of how to resolve relative references be-
tween words and between sentences. The challenge is to correctly associate personal
pronouns such as “he” or “she” to the corresponding entity in former sentences. Also
determiners such as “that” or “this” need to be adequately resolved.

2.4 Chapter Summary

This chapter presented three main concepts which the framework proposed by this
master thesis is build on. These concepts are essential to understand how the framework
works. It implements a round-trip approach, described in the next chapter, which cy-
cles between the generation of natural language text from BPMN process models and the
generation of BPMN process models through natural language texts. In particular, NLP
techniques (Section 2.3) were used to generate BPMN process models (section 2.1) from
the natural language text and NLG techniques (Section 2.2.2) were used to generate natu-
ral language text from BPMN process models. As described earlier in this chapter, several
steps (refer to 2.2.4 and 2.3.5) had to be addressed to instantiate the round-trip approach.

3. The Round Trip Approach

This chapter presents the round-trip technique besides its implementation. The
technique was implemented in a language-independent framework, through the develop-
ment of algorithms capable of generating business process models using natural language
text as input and the integration of algorithms responsible for generating natural language
text from business process model. The result is a framework with features that enable
the synchronization between changes made to text back to the original process model and
changes in the model to reflect in the corresponding text. Hence achieving the desired goal
of maintaining both business process representations (models and textual descriptions) au-
tomatically synchronized. The risk of flaws regarding the information’s consistency in the
manual process is also mitigated by the proposed approach.

Figure 3.1 gives an overview of the round-trip technique. The links between ele-
ments and sentences are previously defined through patternmatching and stored for further
querying by both, Process Model to Natural Language (labelled as “P”) and Natural Lan-
guage to Process Model (labelled as “N”). The pattern matching rules are defined in a
template stored by the framework. Since it is a round-trip, the technique can be triggered
from different scenarios. These use-case scenarios are better described below:

• Generate Text from ProcessModel: The first scenario is the natural language gen-
eration from a given process model. The framework receives the model as input,
triggers the Process Model to Natural Language which queries the linkage compo-
nent and assemble a whole text from the natural language sentences.

• GenerateModel from Process Textual Descriptions: This scenario is represented
by the generation of a process model from a given process textual description.
The framework receives the text as input, triggers the Natural Language to Process
Model which queries the linkage component and assemble a whole model from the
mapped elements.

37

CHAPTER 3. THE ROUND TRIP APPROACH 38

Figure 3.1: Illustration of the round-trip approach.

CHAPTER 3. THE ROUND TRIP APPROACH 39

• Update a Model from Text based changes: This scenario is triggered when a
process textual description is manually updated. The framework’s Synchronization
Component (labelled as “S”) detects these changes and reflect them to a process
model. This is done by triggering the Natural Language to Process Model and thus
generating a updated version of the original model. This scenarios only reflect the
changes, updating only the process model elements that had changes.

• Update a Text from Model based changes: The text update is treated as a new
text generation scenario. In other words, the whole model is submitted as input and
the whole text is regenerated. The decision to generate the whole text again instead
of updating only sentences which had changes, was based on cost-benefit analysis
which considered the performance gain and development effort.

• Round-Trip: This scenario is represented by a generation cycle. For illustration
purpose, consider the process model as starting point. The model is submitted as
the framework input and the text is generated. Then, the text is manually changed
and the original process model is automatically updated. In the same cycle, the
updated model is submitted again to assert whether it matches the text description.
At this point, the user can go in both directions, generate text from model or model
from the text.

Section 3.1 describes the framework architecture, packages and the main classes. Sec-
tion 3.2 describes the steps and algorithms implemented to generate natural language text
from business process models used as input, through a specialized NLG pipeline. Section
3.3 describes in details the generation of business process models using natural language
text as input, through the definition and implementation of a specialized pipeline to deal
with the NLP process. Section 3.4 details the algorithms responsible for the integration
between the NLG and NLP pipelines described in Sections 3.2 and 3.3, enabling the im-
plementation of the round-trip approach. Section 3.5 illustrates the framework usage
through two UML sequence diagrams. These diagrams show how the components and
classes interacts to deliver the process output in text or model format. Finally, Section 3.6
presents the summary for this chapter.

3.1Generic Framework for Natural Language Text

In prior work, a tool capable of generating natural language texts from BPMN process
models was presented [110]. The tool implements the NLG architecture proposed by Re-
iter and Dale (Section 2, Figure 2.10) and makes use of an extended version of the original

CHAPTER 3. THE ROUND TRIP APPROACH 40

NLG pipeline process (Section 2, Figure 2.9). In the present research, the formalism of
this tool is further improved towards a generic infrastructure (i.e., framework) that allows
the addition of new languages belonging to the Romanian and Germanic sub-branches
of the Indo-European language family. Moreover, the logic to handle Portuguese process
models was implemented in order to evaluate the framework language-independent infras-
tructure. Hence, new algorithms have been developed to handle and map the Portuguese
grammar (semantic and syntactic aspects). The framework may significantly increase the
audience of process models as an understanding of process models is no longer bound to
the knowledge of a specific notation.

Although English is the predominant business language, several companies typically
model their processes in native language, partially driven by legal requirements [61]. As
a consequence, any company that model their process using other language, rather than
its native, would not be able to benefit from the framework features. Another drawback is
the complexity of the framework implementation. Natural language generation is a com-
plex subject and, in order to use our technique, it would be necessary to understand all the
NLG and NLP pipeline steps. This could take some time for people without the required
knowledge on this particular field. To overcome this issue, the framework was designed
based on generalization of language-specific components, making them generic to sup-
port multiple languages. It hides the language-independent logic and provides a public
and generic infrastructure for the language-specific logic. In other words, our implemen-
tation encapsulates algorithms that are exactly the same for any language, and provides
generic infrastructure that guides the implementation of algorithms that deal with the syn-
tactic and semantic rules of a given language. This infrastructure defines all the contracts
and operations needed in order to read and produce language-specific texts from business
process models. Thus, making it easier to add support to new languages.

The technique generalization made it possible to abstract a lot of complex and com-
mon aspects from NLG and NLP pipeline steps, such as, the planning phase and sentence
planning phase. These phases are totally encapsulated by the framework, reducing com-
plexity of implementation to handle new languages, and maintaining the focus into the
language specific operations.

3.1.1The Framework Architecture

According to Pree, the proposed framework can be classified as an application frame-
work. “Application frameworks consist of ready-to-use and semi-finished building blocks.
The overall architecture is predefined as well. Producing specific applications usually

CHAPTER 3. THE ROUND TRIP APPROACH 41

means to adjust building blocks to specific needs by overriding some methods in sub-
classes” [96]. This framework is composed by two main components: The NLG core
component and the NLP core component. Both components are based on a languange-
independ module, which permits the addition of multiple languages without altering the
two core components.

The NLG core component (Figure 3.2) is composed by several ready-to-use building
blocks (known as Frozen spots) and defines interfaces which must be implemented to sup-
port specific languages. Each interface represents a hot spot, because they are flexible to
satisfy specific needs (in our case, generate text in a specific language). The architecture’s
frozen spots are represented by classes, while the hot spots are represented by interfaces
(elements stereotyped as «interface») [96].

The GeneralLanguageCommon package (Figure 3.2) is the generic (language-
independent) module. It includes the interfaces definitions, which must be implemented
for a specific language in order to generate natural language text, i.e., it is the Natural Lan-
guage Generation core. It contains the necessary infrastructure to work with the NLG and
NLP pipeline process. It includes the data structures, and it knows exactly which and when
an object must be called to deal with a specific phase of the pipeline. For example, regard-
ing the Localization strategy (represented by the classes of the Localization pack-
age), the module knows when to call the LocalizationManager object to translate
a specific message, retrieved from the LocalizationMessages enumeration (keys)
during the text information extraction. E.g., for the keyPROCESS_BEGIN_WHEN, the re-
turned text would be “O processo começa quando” for Portuguese. Analogously, it knows
when to trigger each interface method implemented for a given language at runtime.

The GeneralLanguageCommon is composed by several sub-packages, which are
defined as follows.

• Fragments: represents sentences in natural language patterns. The classes de-
fined in this package are frozen spots.

• DSynt: maps the information from the process into DSynT trees. Classes defined
in this package are frozen spots.

• Localization: defines the logic needed to access specific language dictionaries.
Besides, it has the common functionality for fetching the translation of a given word.
For example, the LocalizationManager class is used to fetch messages from
the dictionary, which will be used in the final text representation.

CHAPTER 3. THE ROUND TRIP APPROACH 42

• LanguageRealizer: corresponds to packages containing the classes for the
concrete implementation of interfaces and abstract classes defined in General-
LanguageCommon package for each language (e.g., EnglishRealizer and
PortugueseRealizer depicted in Figure 3.3).

• LanguageConfig in the MultiLanguageProject package: is a Factory1

that creates objects from the classes that implement language-specific logic inter-
faces for a given language (e.g., Portuguese or English).

Figure 3.2: NLG Core Architecture - UML Package diagram.

Figure 3.3 presents a package diagram of the hot spots implementations for Portuguese
and English. They are named as Realizer since they realize the implementations of Gen-
eralLanguageCommon package interfaces. Each language has its own specific im-
plementation (e.g., PortugueseLabelHelper class implements ILabelHelper).

1A factory is a program component which main responsibility is the creation of other objects.

CHAPTER 3. THE ROUND TRIP APPROACH 43

Figure 3.3: Implementation of the hot spots defined by the architecture.

So, PortugueseRealizer and EnglishRealizer classes implement hot spots
and use frozen spots to accomplish necessary tasks.

The NlpCore package (Figure 3.4) is the generic (language-independent) NLP mod-
ule. It includes the interfaces definitions, which must be implemented for a specific lan-
guage in order to generate process models from natural language text. In other words, it is
the Natural Language Processing (NLP) core. It contains the necessary in-
frastructure to work with the NLP pipeline process described in Section 3.3. It includes the
data structures, and it knows exactly which and when an object must be called to deal with
a specific phase of the pipeline. For instance, regarding the Text Cleaning Strategy, the
module knows when to call the correct ITextFormatter’s implementation object to
format a specific text, received as input. For example, for texts which follows a given tem-
plate, the returned object would be an implementation of TemplateTextFormatter.
Analogously, it knows when to trigger each interface method implemented for a given text
format at runtime.

C
H
APTER

3.
TH

E
RO

U
N
D
TRIP

APPRO
AC

H
44

Figure 3.4: NLP Core Architecture - UML Class diagram.

CHAPTER 3. THE ROUND TRIP APPROACH 45

With the definition of the NLP core module, the developer does not need to know in
details how the NLP process works and the developer is free to choose weather he will
use the self-package NLP algorithms or if he prefers to develop new algorithms to best
fit his needs. The module assures that all the business process properties will be correctly
extracted from the natural language text, as long as interfaces and their methods are im-
plemented according to the specification. The components of this model are described as
follows:

• ITextFormatter: The objective of this interface is to remove the stop words
(i.e., words and phrases that must be filtered out before the processing of natural lan-
guage text) and to remove any special character used for formatting purpose (e.g.,
underscore, excessive white spaces, bullets etc.). It is also responsible for undo-
ing aggregation tasks. For example, consider the following text fragment: “- The
customer pays with credit card. Afterwards, he signs the retrieval form.” would
be formatted to “Customer pays with credit card. Customer signs retrieval form.”.
In this case, the stop words “Afterwards”, “The” and the formatting character “-”
were removed from the text fragment. Note that the word “he” was replaced by
the actor’s name “Customer” due to the undoing of referring expression generation
(Section 3.2.2).

• INaturalLanguageProcessor: This interface defines the necessary meth-
ods which are called to identify the words (or plain sentences) that represents rele-
vant business process data. It is also responsible for extracting all the process model
elements properties according to its respective type (e.g., gateway, event or activ-
ity). For instance, the implementation for identifySentenceType method must be
capable of mapping specific language patterns (e.g., IF <condition> THEN, <ac-
tivity>) to specific process model elements (e.g., Gateway XOR). After identifying
the element type, it calls the extraction method (e.g., extractGatewayProperties) to
store its data. For illustration purpose, the following sentence should be mapped
to a XOR Gateway accompanied by an activity: “If payment is authorized, then
the Financial Department notifies the payment.”. In this case, the Gateway label
is represented by the clause “payment is authorized” and the activity by the clause
“Financial Department notifies the payment”.

• RealizedText: This class is initialized with the natural language text and starts
the processing to generate a plain text, without any formatting and stop words. The
result is a list of several plain sentences (without any formatting or stop words).

• TemplateTextFormatter: Concrete implementation of the ITextFormatter

CHAPTER 3. THE ROUND TRIP APPROACH 46

interface. This implementation is specific to Template descriptions that were auto-
matically generated from a BPMN model. The current supported template is pres-
ented in Table 3.1.

• SentenceText: This class represents a plain sentence, extracted from a business
process textual description. It has two main responsibilities:

– Store whether the sentence is a new sentence or if it was removed from the
original description.

– Given a String (plain sentence) it must identify which process model element
it represents, i.e., if the sentence represents an activity, gateway or an event.
To accomplish this goal it must rely on several NLP techniques, which are
injected during runtime through the INaturalLanguageProcessor interface.

• ProcessProperty: Domain object responsible for storing the general properties
for a process model element, which are: its ID and its type (e.g. Event, Activity or
Gateway).

• ProcessActivityProperty: Domain object responsible for storing the spe-
cific properties for an activity model element. The activity’s specific properties are:
business object, action, actor and addition.

• ProcessElementType: Enumeration (keys) that represents all the processmodel
elements currently supported by the NLP core module. Table 3.2 details the ele-
ments that are supported by the module.

• ProcessEventProperty: Domain object responsible for storing the specific
properties for an event model element. The event’s specific properties are: event
type (which is an instance of ProcessElementType), identifier and addition.

• ProcessGatewayProperty: Domain object responsible for storing the spe-
cific properties for a gateway model element. The gateway’s specific properties are:
gateway type (which is an instance of ProcessElementType), description and a list of
RealizedText objects which stores the branches, each identified by a bullet character
in the text. Section 3.3.2 illustrates a textual gateway with several branches.

• OperationType: Enumeration with all possible operations that can trigger the
synchronization between a business process textual description and its respective
model.

• PortugueseLanguageProcessor: Concrete implementation of the INatu-
ralLanguageProcessor, considering the Portuguese language. It implements

CHAPTER 3. THE ROUND TRIP APPROACH 47

several procedures which are essential for extracting process semantic from natural
language texts. Examples of these procedures are: Algorithm 1, 2, 3 and 4.

Table 3.1: Overview of the current template text pattern supported by the NLP Core Com-
ponent.
Patterns Mappings Supported
ACTIVITY-PASSIVE = BO + [ADDITION] + ACTION + ACTOR
ACTIVITY = [DISOCURSE_MARKER], ACTOR + ACTION + BO + [ADDITION]

EVENT-BEGIN-1 = [The] process begins [when there is] BEGIN_DESCRIPTION.
EVENT-BEGIN-2 = [The] process begins [when] ACTIVITY.
EVENT-FINISH-1 = Finally, the process finishes.
EVENT-FINISH-2 = Once all the brances are executed, the process finishes with
FINISH_DESCRIPTION.

GATEWAY-XOR-1 = IF + CONDITION_CLAUSE + [THEN] + ACTIVITY.
GATEWAY-XOR-2 = IF + CONDITION_CLAUSE + [THEN] + ACTIVITY.
OTHERWISE + ACTIVITY.
GATEWAY-PARALEL = DISOCURSE_MARKER +
the process is divided into x parallel branches:
GATEWAY-AND = DISOCURSE_MARKER + the following branches are executed:

The framework is composed by several classes which can be grouped according to
three perspectives: (i) TheNLG core (Figure 3.5), which contains the classes responsible
for generating natural language text from business process models; (ii) The Language
core (Figure 3.6), which contains the classes responsible for dealing with the linguistic
aspect (morphology, semantics and syntactic rules) of specific languages; and (iii) The
NPL core (Figure 3.4) which contains the classes responsible for dealing with natural
language processing (e.g., extract relevant business process information from the text).

With the definition of the NLG and NLP core module, the developer does not need to
know in detail how the NLG or NLP process works. The module assures that a natural
language text will be produced for the given language, as long as interfaces and their
methods are implemented according to the specification (Language core, Figure 3.6).
Regarding the interfaces (hot spots), there will be n implementations of the same interface,
where n is the number of different languages currently supported.

CHAPTER 3. THE ROUND TRIP APPROACH 48

Table 3.2: Overview of the Process Model elements supported by the NLP Core Compo-
nent

Process Model Element Description
GATEWAY_AND Represents an AND

gateway element (control-flow)
GATEWAY_PARALLEL Represents a parallel

gateway element (control-flow)
GATEWAY_XOR Represents a XOR

gateway element (control-flow)

ACTIVITY Represents an activity element

EVENT_FINISH Represents an end event element
EVENT_FINISH_WITH_DESCRIPTION Represents an end event

element with a descriptive label
EVENT_BEGIN_WITH_DESCRIPTION Represents a begin event

element with a descriptive label
EVENT_BEGIN_WITH_ACTIVITY Represents a begin event

element followed by
an activity element

UNKNOW Type assigned to those sentences
that could not be mapped
to any of the above elements

3.1.2Framework classes and Interfaces Specification

This section aims to details the most important interfaces and packages, providing the
necessary documentation to add support to new languages.

• LabelAnalysis: This package is responsible to extract linguistic information
from process model labels. Interfaces defined in this package (hot spots) must be
implemented for each supported language, i.e., all the linguistic classification algo-
rithms must be implemented for each language. For example, algorithms to identify
that assess is the verb in the label application assessment.

• ILabelCategorizer: This interface (Figure 3.7) defines all the methods for
the label classification into one specific style, which can be: Action-Noun (AN),
Verb-Object Style (VOS) or Descriptive Style (DES). There are more styles that

CHAPTER 3. THE ROUND TRIP APPROACH 49

Figure 3.5: Classes used to generate a natural language text from a business processmodel.
Together they form the NLG core.

Figure 3.6: Classes used to deal with the linguistic rules of a specific language.

CHAPTER 3. THE ROUND TRIP APPROACH 50

can be used to create labels in process models, but they are not covered by this
paper. For further reference about labeling styles, please refer to [61].

• ILabelProperties: This interface (Figure 3.10) contains all the necessary
methods definitions for the storage and retrieval of the label properties. Each pro-
cess model label, have its according ILabelProperties object. This object gather all
the textual information extracted from the process label, which contains important
information, e.g. Actors, Business Objects and Actions. In other words, it is used
as a container for the information which will be needed to generate a complete natu-
ral language sentence. When the relevant information is extracted form the process
label, it is stored within as within the object property. Afterwords, the information
is retrieved by querying the respective property.

• ILabelHelper: This interface (Figure 3.9) contains all the necessary methods
definitions for the analysis of text inside a process model label. For example, in
order to find out if the first word of a label is likely an action, the method isVerb is
called. If the first word is a verb, then the Action property of the ILabelProperties
object will be set to the respective word. Regarding semantic aspects, this interface
defines the most important methods for a specific language. All the linguistic spe-
cific logic will be centralized in this interface implementation. The algorithms must
be able to, e.g., given a specific word (string), identify if it is a verb, noun, adjective,
adverb etc. The main algorithms that were developed considering the Portuguese
language can be found in the Appendix A.

• ILabelDeriver: This interface (Figure 3.8) is used to derive all the informa-
tion from a specific label category, known as Verb-Object Style (VOS) [61]. When
a VOS label is found, during the analysis of the business process model, the infor-
mation extraction for the given label starts. The objective of the implementation for
this interface is to populate the ILabelProperties object with all the relevant textual
information read from the Label object. In order to find out which information are
relevant and their linguistic semantic, the implemented methods from the ILabel-
Helper must be called.

• ISurfaceRealizer: This interface (Figure 3.11) defines the necessary meth-
ods which are called to generate the final text. Basically, the most important imple-
mentation is the realizeSentencemethod. This method receive as input a DSynT tree
with all the textual information gathered during the textual planning and sentence
planning phases (which contains data about the activities sequences). Through the
DSynT tree object’s properties, it is possible to assemble the respective sentence.

CHAPTER 3. THE ROUND TRIP APPROACH 51

Figure 3.7: Interface responsible for the definition of methods needed to classify a label
into one specific style.

Figure 3.8: Interface responsible for the definition of methods needed to extract informa-
tion from a specific label style.

Figure 3.9: Interface responsible for the methods definitions of text analysis inside a pro-
cess model label.

CHAPTER 3. THE ROUND TRIP APPROACH 52

Figure 3.10: Interface responsible for all the necessary methods definitions for the storage
and retrieval of the label properties.

Figure 3.11: Interface responsible for the definition of the necessary methods which are
called to generate the final text.

CHAPTER 3. THE ROUND TRIP APPROACH 53

3.2Model to Text: Natural Language Generation from BPMN process models

This sections aims at describing in details how eachNLG component works, presenting
the set of algorithms deployed for each component. By running the NLG pipeline, natural
language texts can be produced from process models. The only pre-requisite for parsing
the models is that they must be compliant to the main process modeling and labeling style
guidelines [80, 79, 61].

3.2.1Text Planing

This section details the implementation regarding the first phase of the NLG pipeline
process (depicted in Figure 2.10). To treat the Text Planing step, the following implemen-
tations were considered.

Linguistic Information Extraction The main goal of this component is the correct in-
ference of the linguistic information from all the labels (e.g., name of the activities, de-
scriptions, event labels, gateways labels and actors) in a business process model. This
component was built on process modeling guideline premises. Thus, it is essential that the
process models guidelines were followed while designing the model. The package Label-
Analysis of the GeneralLanguageCommon module (Figure 3.2) contains all the methods
that are used during the information extraction phase. In particular it is capable of parsing
labels written using the naming conventions (i.e., label styles) presented at Table 3.3 [61].
In a nutshell, it reads all the label from the process model and populates, for each label,
the respective ILabelProperties object (Figure 3.10) with the label’s properties (e.g. actor,
action, business object). The identification of the semantic function of a specific word is
given by the ILabelHelper implementation for the specific language (Figure 3.9). In spe-
cial, the following methods are essential for the information extraction: isVerb , isNoun ,
checkForConjunction , isDefArticle, removeArticleFromBO and getPrepositions .

Annotated RPST Generation This module is responsible for creating the RPST tree
representation (class RPST depicted in Figure 3.5) of the process model (class Process-
Model, depicted in Figure 3.5) received as input by the system. It receives as input a graph
structure (class GraphProcessModel, depicted in Figure 3.5) that represents the process
model. The graph is generated in the previous step of linguistic information extraction.

CHAPTER 3. THE ROUND TRIP APPROACH 54

Table 3.3: Supported Labeling styles
Labeling Style Core Structure Example
Verb–object VO A (imperative) + O Create invoice, Crie nota fiscal
Infinitive Style IS A (infinitive) + O Create invoice, Criar nota fiscal
Action-noun AN (np) O + A (noun) Invoice creation
Action-noun AN (of) A (noun) + “of ” + O Creation of invoice
Action-noun AN (gerund) A (gerund) + [article] + O Creating invoice
Descriptive DES [role] + A (3P) + O Clerk creates invoice

Text Structuring The main responsibility of this component is the addition of para-
graphs, text indentation and markers, allowing the text to be shown in a fashion format
and improving the text’s quality and readability. Basically, the RPST tree’s nodes are
traversed and their structuring properties are set. For example, if an activity must start a
new paragraph, the attribute hasParagraph of the respective node is set to true. Others
properties, like hasBullet and senLevel are used to help with the indentation of the final
text. These properties are read by the Message Realization phase to generate the text with
the correct indentation for activities that are executed in parallel, for example.

3.2.2Sentence Planning

This section details the implementation regarding the second phase of theNLGpipeline
process (depicted in Figure 2.10).

DSynT Message Generation This component transforms the previously created RPST
tree into a list of intermediate messages, i.e., the linguistic information of the model is not
directed mapped to the final text, rather to a conceptual representation that is still suitable
for changes. In particular, each sentence is stored into a DSynt tree. The Dsynt package
(depicted in Figure 3.2) have all the classes that are used in this phase. Basically, the
package contains the specific DSynt types, which can be a conditional sentence (originated
from, for example, a XOR-Gateway) or a regular sentence. The DSynTSentence class
is abstract, hence it cannot be instantiated. It was created only to store all the DSynT
properties that are common for both, conditional and regular sentences. Also, it provides
default methods for accessing some of the mandatory properties.

Message Refinement This component is used to the message aggregation task. The
need for message aggregation arises when the process contains a big sequence of activi-

CHAPTER 3. THE ROUND TRIP APPROACH 55

ties. In this case, we can use three types of aggregations techniques: aggregation by actor,
by business object and by action. There are two classes involved in the aggregation task:
SentenceAggregator, which aggregate sentences executed by the same actor (role) and
ReferringExpressionAggregator, which aggregate sentences through the addition of refer-
ring expressions, i.e., addition of pronouns to avoid unnecessary repetition of actors. Both
classes are depicted in Figure 3.5. The message refinement must use several methods de-
fined by the ILabelHelper interface, in order to generate a sentence correctly: isPronoum,
getGender and getPronouns.

3.2.3Sentence Realization

This section details the implementation regarding the last phase of the NLG pipeline
process (depicted in Figure 2.10). This component is responsible for generating the natural
language text, which represents the process model in a textual format. The complexity
of the message realization task lead to the development of public available tools, like
TG/2 and RealPro2 Realizer [11, 60] for English. Due to the lack of an adequate tool to
the message realization process in Portuguese, specific algorithms to treat the Portuguese
sentences were implemented.

It was observed, based on the NLG pipeline, that aspects and operations were common
and general to any language belonging to the Romanian and Germanic sub-branches of the
Indo-European language family. Hence, a generic mechanism that accepts the implemen-
tation of a message realization module in a given language, without the need to change
the others systemsmodules, was created (interface ISurfaceRealizer from the GeneralLan-
guageCommon package - Figure 3.2). In a nutshell, the implementation of this interface
for a specific language must be able to, given a DSynT tree, read the textual information
from the nodes and assemble a grammatically correct sentence (this process is triggered
by the realizeSentence method).

After the identification of the necessary operations to elaborate the Portuguesemodule,
the creation process of the necessary algorithms to the correct execution of the operations
was straightforward. First, a verb database was created with verbs gathered from the tool
KonjugationsHase from the German organization Cactus20003, totalizing 15310 different
verbs in Portuguese. Then, a second database was created for the identification and ma-
nipulation of others syntactic functions that the words of a process model can assume, like:
nouns, adjectives, pronouns, articles and adverbs. The necessary data was colected from

2For more information, please refer to http://www.cogentex.com/technology/realpro/
3The verbs can be downloaded from http://www.cactus2000.de/de/software/

conjughase.php

http://www.cactus2000.de/de/software/conjughase.php
http://www.cactus2000.de/de/software/conjughase.php

CHAPTER 3. THE ROUND TRIP APPROACH 56

Floresta4 corpus [2] for Portuguese, Totalizing 1.640.000 words. All the words within the
Floresta corpus were tagged according to the predefined categories that a word can assume
(e.g., nouns, adjectives, pronouns, articles and adverbs). Some minor changes were done
to the original corpus database, enabling it to be read by the framework’s classes. Hash
tables were used to map the words to their respective category (i.e., syntactical function).
The grater the word database is, the bigger is the coverage for words found withing process
models. Regarding the English language, a Java WordNet library was used for querying
the syntactical function of words. These syntactic functions can take different shapes in
a process model, they can be a business object, an actor, or express some condition or a
complement. With all the necessary and already structured data, the methods to generate
a grammatically correct message were developed. Some of them are responsible for clas-
sifying a given word, extracted from the process model, according its respective syntactic
function through a simple search in the database for the respective word. Some of the
operations that represents these functionality are exposed by the ILabelHelper interface,
such as isAdverb , isVerb , isNoun and isAdjective.

Others methods are responsible for the transformation of a given word in some specific
form, for example, transformation of the verb that represents an action extracted from an
activity of the model in the infinitive form for its respective conjugation in the 3rd person
singular. Other example is the transformation of the gender and form of a given noun, to
its plural or singular form, as well as to the masculine or feminine if it is necessary. The
related methods are: getInfinitive , getParticiple , getPresent , is3PS and transformToSin-
gularForm.

Based on these methods, for each DSynt tree, the correct article to the respective nouns
are added, the verb is conjugated in the correct form according to the context and with the
noun it is related to. Besides, the necessary connectives are added, like comas, spaces
and word capitalization, if it is necessary. Some of the related methods are: getGender;
getArticle.

3.3Text to Model: BPMN process model generation from Natural language Texts

The round-trip approach is represented by the capability of generating natural language
text from process models and generating updated versions of the process models from

4Floresta is a corpus (big collection of articles) composed by almost 95.000 sentences (approximately
1.600.000 words) gathered from CETENFolha corpora (texts from the Brazlian newspaper Folha de São
Paulo) and CETEMPúblico (public portuguese diary, dated from 1991 to 1998). The entire corpus was
automatically analyzed by PALAVRAS syntatc analyzer [2].

CHAPTER 3. THE ROUND TRIP APPROACH 57

modified natural language texts.

This section details how NLP techniques were implemented by the NLP Core compo-
nent deployed within framework, enabling the extraction and parsing of natural language
texts, in order to gather business process data and present this data through a machine
artifact format (e.g., BPMN process model).

The NLP process follow the steps presented in Figure 3.12. The following sections
present details about each step and when each method is triggered within the pipeline
execution.

Figure 3.12: Text to model pipeline - Steps performed to generate BPMN model from
natural language text.

3.3.1Text Planing

This section details the implementation regarding the first phase of the NLP pipeline
process (Figure 3.12). This module finds the right strategy to extract linguistic data from
the text, decides what to do with unnecessary data (e.g., words that has no semantic rele-
vance) and also deals with referencing problems between sentences. It does not have any
process model specific logic, being suitable for reuse in other applications which needs
NLP processing capabilities. To treat the Text Planing step, the following implementations
were considered.

Text Pattern Extraction The main goal of the component Text Pattern Ex-

traction is the correct inference of textual pattern represented by the text received as
the input. The text input (e.g., the text presented in Table 3.4) is received as parameter by
the RealizedText object, which retrieves text patterns from the database (i.e., implementa-
tions for ITextFormatter interface) and runs its inicializeTextFormatter method (depicted
in Figure 3.4) against the current framework’s configuration. If any match is found, it in-

CHAPTER 3. THE ROUND TRIP APPROACH 58

stantiates the specific implementation mapped to the given pattern. Otherwise, it returns
an error message to inform the user that the given pattern is not currently supported by the
framework and thus aborting the pipeline execution.

Table 3.4: Supported Text Pattern received as input.
The process begins when the Room-Service Manager takes down an order.
Then, the process is split into 3 parallel branches:

- In case alcoholic beverages are ordered, the Room-Service Manager
gives order to the Sommelier. Afterwards, one or more of the following paths are executed:

* The Sommelier fetches wine from the cellar.
* The Sommelier prepares the alcoholic beverages.

- The Room-Service Manager submits the order ticket to the Kitchen. Subsequently,
the Kitchen prepares the meal.
- The Room-Service Manager assigns order to the Waiter. Then,
the Waiter readies the cart.

As long as all the 3 branches were executed, the Waiter delivers to the guest’s room.
Afterwards, the Waiter returns to the room-service.
Subsequently, the Waiter debits from the guest’s account. Finally, the process finishes.

To better illustrate this component usage, consider that the framework’s configuration
for the text format option is set to “TemplateTextFormatter”. The RealizedText object
would search for classes named “TemplateTextFormatter” that implement ITextFormatter
interface. This component serve as a initial validation for the textual pattern, avoiding
unnecessary processing by the NLP core, thus saving both user’s time and system pro-
cessing resources. The validation consists of verifying if the text received as input follow
any supported text pattern.

Natural Language Processing The main goal of the Natural Language Pro-

cessing component is to analyze the text’s semantic and extract relevant linguistic in-
formation from the text. It is in this phase that the main NLP concepts (detailed in Section
2.3) are employed in specific algorithms to recognize specific patterns (e.g., end of a line),
splits the text into sentences, the sentences into words array and classify words according
to their respective syntactic rule.

The first step is the stop words removal, which consist of removing words that are of
little value when building up a business process model (e.g., articles and discourse markers

CHAPTER 3. THE ROUND TRIP APPROACH 59

such as “Then”, “Afterwards”). These stop words are stored within a file or in the database
and may vary according to the text’s current language or text structure. Therefore, the
method is defined in the ITextFormatter interface and can thus be overridden with
custom code if the self-package algorithms does not fit the developer needs.

The second step is the Part-Of-Speech Tagging (POS), which consist of tagging each
word (within the word array) with its respective syntactic role (e.g., plural noun, adverb).
For each word, it tries to identify its syntactic role. If no such role is found, then the word
is stored into an ignored words list and it is excluded from the word array.The ignored
word is stored because it is further referenced by the Model Elements Generation

component.

Text Cleaning The main goal of the component Text Cleaning is to undo message
refinement step executed by the NLG pipeline (Section 3.2.2). Undoing message refine-
ment is responsible for replacing referring expressions and sentences aggregators. As an
illustration example, consider the following text:

In case alcoholic beverages are ordered, the Room-Service

Manager debits from the customer account and gives order to

the Sommelier. Afterwards, he fetches wine from the cellar

and prepares the alcoholic beverages.

If the Text Cleaning component is triggered for the above text, the result would be:

In case alcoholic beverages are ordered, the Room-Service

Manager debits from the customer account. The Room-Service

Manager gives order to the Sommelier. The Sommelier fetches

wine from cellar. The Sommelier prepares alcoholic beverages.

Here some challenges arises, for example, how to replace correctly the referring ex-
pression object. This challenge is known in NLP research area as the “Referencing” chal-
lenge (see Section 2.3.5). This component addresses this challenge by using a simple
heuristic: if a referring expression is found, then it looks for the previous role (i.e., actor)
and replaces the pronoun by the role found. If no such role is found, then it returns an error
message stating that a referencing problem has been found and it must be fixed manually
by the user before submitting the text again.

The use of a simple heuristic is justified because the texts used as input follows specific
patterns and are not totally unstructured. Despite of not being generic enough to deal with
virtually any text pattern, the NLP Core Component architecture is flexible and can be

CHAPTER 3. THE ROUND TRIP APPROACH 60

extended to support any text pattern, as long as the interface methods are implemented
according to the specification.

3.3.2Sentence Text Planning

This section details the implementation regarding the second phase of the NLP pipeline
process (Figure 3.12). Thismodule uses the text treated by the previousmodule to generate
several SentenceText objects to store textual data and the correct structure so that the text
structure can be mapped to sentences in the right order. To treat the Sentence Text Planing
step, the following implementations were developed.

Sentence Text Generation and Structuring The main goal of the Sentence Text

Generation and Structuring component is to generate the SentenceText objects
for the original RealizedText created from the text received as input, while preserving
the description structure. In this context, description structure means: (i) the activities se-
quence orders; and, (ii) the correlation between them. For example, consider the following
text fragment extracted from Table 3.4:

In case alcoholic beverages are ordered, the Room-Service

Manager gives order to the sommelier. Afterwards, one or

more of the following paths are executed.

• The Sommelier fetches wine from the cellar.

• The Sommelier prepares the alcoholic beverages.

Then, the Waiter delivers the beverages to the guest.

In the above example, “In case alcoholic beverages are ordered” express a condition
(i.e., a control-flow) and the bullet indicates that the associated sentence is one possible
output for the control-flow. This structure is particular important regarding business pro-
cess models. If the same text were written as:

In case alcoholic beverages are ordered, the Room-Service

Manager gives order to the sommelier. Afterwards, one or more

of the following paths are executed. The Sommelier fetches

wine from the cellar. The Sommelier prepares the alcoholic

beverages. Then, the Waiter delivers the beverages to the

guest.

CHAPTER 3. THE ROUND TRIP APPROACH 61

It would be not easy to determinewhich sentences were suitable outputs for the control-
flow. For instance, identify the sentence “Then, the Waiter delivers the beverages to the
guest” be one possible output for the control-flow. It is easier to notice that this sentence
is not a possible output if we look at the first text (with formatting characters), whereas
this is not clear looking at the second text (without any formatting characters). Figure 3.13
illustrates the correct mapping between this set of sentences and the corresponding BPMN
elements.

Figure 3.13: Process fragment used for illustration purpose.

The strategy (i.e., implementation) for generating SentenceText may vary according to
the ITextFormatter implementation. For illustration purpose, consider the following text
fragment extracted from Table 3.4 and assume the TemplateTextFormatter as the default
implementation for ITextFormatter in this case:

The Room-Service Manager gives order to the Sommelier.

CHAPTER 3. THE ROUND TRIP APPROACH 62

Afterwards, one or more of the following paths are executed.

• The Sommelier fetches wine from the cellar.

• The Sommelier prepares the alcoholic beverages.

Then, the Waiter delivers the beverages to the guest.

The text input is obtained by the RealizedText’s getPlainTextmethod and it is then split
by sentence period limiter (’.’). The SentenceText objects are created in the same order
which they appear in the original text, thus preserving the activities sequence orders. If a
bullet is found, then a special treatment is applied. Another RealizedText object instance is
created, to simulate a new branch level, and all the sentences within the same bullet context
are added to this secondary RealizedText object sentence list. This secondary RealizedText
is added to the branch list of the last SentenceText from the main RealizedText object.
Please note that this procedure may be applied recursively if a sub bullet is found within a
main bullet sentence. At the end of these steps we would have a tree structure (similar to
the RPST data structure). The Algorithm 7 describes the above procedure in pseudo-code.
Figure 3.14 illustrates how the sample text is mapped to the objects described above and
how their relations enable them to be disposed as a tree structure.

This sentence structuring was designed to enhance and facilitate the process of gener-
ating process models from textual descriptions, as storing the elements through a tree data
structure enables to traverse it using Depth-first search in pre-order [28]. In the example
depicted by Figure 3.14 the correct visiting order would be: Tree Node 1 -> Tree Node 2
-> Tree Node 3 -> Tree Node 4 -> Tree Node 5.

3.3.3Process Model Realization

This section details the implementation regarding the last phase of the NLP pipeline
process (Figure 3.12). This module is based on the objects created by the previous mod-
ule and has all the process model generation specific logic. To treat the Process Model
Realization step, the following implementations were considered.

Model Elements Generation The Model Elements Generation component is
responsible for generating the model elements from the SentenceText objects. The biggest
challenge for this step is to offer support to multiple text structures and formats. To ad-
dress this challenge, the INaturalLanguageProcessor interface was defined. By
implementing the interface, the developer is capable of defining its own custom method

CHAPTER 3. THE ROUND TRIP APPROACH 63

Figure 3.14: Example of the relations among the objects seen as a Tree Structure.

for generating the model elements from the SentenceText data, instead of using the self-
packaged algorithms. The default framework implementation is based on amulti-language
template pattern, with its own syntax (TemplateTextFormatter, Section 3.1.1). It can be
extended to cover new patterns and thus, offer support for mapping different text sen-
tences to the samemodel element type. Table 3.1 depicts the implemented template, which
is language-independent. As can be observed, the template offer support to specific text
structures, which can then be mapped to process model elements. After mapping each sen-
tence to a SentenceText object instance, the model elements generation phase starts. For
each SentenceText, the remaining formatting characters (e.g., bullets) are removed and the
sentence is mapped to a process model element. After identifying the model element that
the sentence represents, a link is created between the SentenceText and the ProcessProp-
erty object to act as a glue between the language level and process model level analysis
(both classes are depicted in Figure 3.4). With this link, it is possible to track back the
original sentence associated with a process model element and vice-versa.

CHAPTER 3. THE ROUND TRIP APPROACH 64

The Atomicity challenge (described in Section 2.3.5) is also addressed by this compo-
nent. For example, it must take into consideration that a single activity may correspond to
multiple sentences and vice-versa. Consider the following sentence: “The process begins
when the Room-Service Manager takes down an order.”. Two process model elements
can be identified when analyzing this sentence: (a) “The process begins” represents a
begin-event and “Room-Service Manager takes down an order” represents an activity.
This component is capable of identifying such scenarios and handle them accordingly.
For this specific example, after identifying that the sentence represents a begin event as-
sociated with an activity, it stores the event textual description in one SentenceText object
and creates a new SentenceText object to store the activity textual description and updates
the links between these sentences (Figure 3.15).

Figure 3.15: SentenceText instance A is broken into two parts, to address the Atomicity
challenge: SentenceText instance A’ and SentenceText instance B.

Process Model Structuring The model structuring refers to structuring the generated
elements according to the order which thy appear within the text and also respecting sen-
tences correlations, in the same manner as it was described in Sentence Text Generation
and Structuring component. Taking advantage of the link between the SentenceText and
the associated model element, we also benefit from the initial sentences structuring. In
other words, the process model elements structuring is the same as the sentence struc-
turing. Each SentenceText is mapped only to one model element, and we just need to
traverse through the sentences tree nodes, fetch its associated model element and create
the ProcessModel object. With the process model object (which is not notation specific),
it is possible to translate it to any specific notation and print out the whole process model
to the desired output (e.g., JSON, xml, bpmnl, etc), which is done by the next and final

CHAPTER 3. THE ROUND TRIP APPROACH 65

NLP’s pipeline component.

BPMNModel Generation Themain goal of theBPMN Model Generation compo-
nent is to generate a business process model in BPMN standard notation. It is important to
notice that, the ProcessModel object generated in the previous step is not notation specific.
It can be instantiated to any notation, as long as this component is extended to support the
chosen notation. The default generation algorithm generates the model as a machine arti-
fact, more specifically it generates a JSON file that represents the process model written
using the BPMN notation. The JSON file is then read by a BPMN graphic modeler tool
to dispose all the elements visually for the end user. In particular, the Signavio5 online
platform is used to read the JSON file and output the graphic process model to the user.
As flexibility is the key design point of the framework, it supports generation to other ma-
chine artificats formats (e.g., xml) through the use of interfaces. If needed, the developer
just need to implement the interface methods to add support for generating a BPMNmodel
in another file format.

3.4Strategy for Incorporating Textual and Model-based Changes

The discussion in the Section 2.2.4 (NLG) and Section 2.3.5 (NLP) illustrates that a
mapping between text and process model is associated with many challenges. In order
to adequately implement the round-trip, we hence have to define which change scenarios
exist and how they can be implemented for model and text. For process models, change
scenarios have been intensively discussed by Weber et al. and Kolb et al., which also
discuss how the basic change operations for process models translate into textual changes
[136, 51]. Table 3.5 gives an overview of change operations for process models, texts and
their connection.

Using the above table as a guide, we defined the main operations that should be sup-
ported by our round-trip technique. These operations were implemented within the frame-
work, enabling it to synchronize textual changes back to the original process model. The
operations must be inferred by analyzing the differences between the original text and the
changed version. For example, if a sentence is removed from the text, it must be tagged as
an activity/event removal. Afterwards, the correct business process element (e.g., Activ-
ity, Event, Gateway and Role) is tracked through the data structure links between sentence
elements and process elements. Finally, the operation is performed in business process

5available at www.signavio.com

CHAPTER 3. THE ROUND TRIP APPROACH 66

Table 3.5: Overview of Change Operations for Process Model and Text and their Connec-
tion, adpated from Kolb et al. [51]

Operation on Model Operation on Text
Add Activity / Event Add Clause / Sentence
Add Gateway Add Meta Clause / Meta Sentence
Add Business Object Add Object to Clause / Sentence
Add Addition Add Adverbial Phrase to Clause / Sentence
Add Role Add Subject of Clause / Sentence

Change Activity / Event Change Clause / Sentence
Change Gateway Label Change Meta Clause / Meta Sentence
Change Action Change Verb of Clause / Sentence
Change Business Object Change Object of Clause / Sentence
Change Addition Change Adverbial Phrase of Clause / Sentence
Change Role Label Change Subject of Sentence

Remove Activity / Event Remove Clause / Sentence
Remove Gateway Remove Meta Clause / Meta Sentence
Remove Business Object Remove Object of Clause / Sentence
Remove Addition Remove Adverbial Phrase from Clause / Sentence
Remove Role Remove Subject of Sentence

model level, removing the element from the original process model. These steps are the
same for changing sentences on the original text.

For sentences addition, it has to perform another step after having identified the text
changes (Section 3.4.1), because the link between sentence and model still does not exist.
As seen earlier, the model-sentence links are automatically created from a process model
as input. In this case, there is no such process model yet. Thus, the links and the process’
model elements itself must be created using the same strategy described in sections 3.3.2
and 3.3.3. After creating the model element, the links are added to the data structures and
the model is then updated (Section 3.4.2).

Depending on the context, there are some operations that can trigger other operations in
order to complete successfully. For example, let’s consider a simple process that has just
one role and two activities. Figure 3.16 illustrates the process through both knowledge
representations – model and text. If the role “Secretary” is changed to “Intern” in the
sentence “Afterwards, the secretary writes down the message”, the role element’s label
cannot simply be replaced to “Intern”. Otherwise, the updated model would result in

CHAPTER 3. THE ROUND TRIP APPROACH 67

two activities being executed by the “Intern” which is not the desired result. Instead,
the correct output should be the addition of a new role and mapping the activity “Write
down message” to this role’s lane. Figure 3.17 illustrate the correct output for the sample
process. So, despite having changed only one word in the original text (second occurrence
of “Secretary” to “Intern”), the changes reflected to the original model were much more
complex than simply updating the role’s label. The framework algorithms are capable of
dealing with these scenarios as explained in Section 3.4.2.

Figure 3.16: Simple process, represented in both text andmodel, designed only to illustrate
a simple role change example.

Figure 3.17: Updated version of the previous simple process, represented in both text and
model.

3.4.1Textual Diff

This section details the strategy developed for identifying changes in the original text.
First, it was reasoned about weather using an out-of-the-shelf solution or if a new one
should be developed to identify text changes in specific textual patterns. Most of the
available tools works with the Levenshtein distance between two strings, which gives
the number of edit operations that are necessary to modify one string to obtain another
string [54].

CHAPTER 3. THE ROUND TRIP APPROACH 68

For this case it is not necessary to know how many character does the string differ
from another string. It is enough to know that they are not the same. As a result, it is not
necessary to use such algorithms for now. Besides, an additional effort would be neces-
sary to map the result to the specific data structures already developed. Thus, a custom
technique was preferred to best fit the change operations requirements (Table 3.5). The
algorithm details (in pseudo code) are presented in the Appendix (Algorithms 5, 6 and 8).
Nevertheless, an abstracted explanation of the technique can be found next. Basically, the
change operations can be grouped into two groups: insert and delete. The changes (i.e.,
updates) can be seen as a special case, where the original sentence is tagged as “Deleted”
and the new one is inserted in its place. In other words, there is no need to identify weather
only a specific word has changed within a sentence. Instead, a binary evaluation is per-
formed, tagging the sentences as deleted (0) or inserted (1). While marking the sentences
as removed or inserted, the algorithm also calculates the suitable position that this opera-
tion should be performed in the original text. The example below illustrates the technique
usage considering 0 based indexes (i.e., sentence 0 is the first text’s sentence):

• Original Text = O processo comeca quando o Secretario recebe

o pedido de compra. Finalmente, o processo é terminado.

• Changed Text = O processo comeca quando o Secretario recebe

o pedido de compra. Em seguida, o gerente finaliza o

pedido. Finalmente, o processo é terminado.

• Result = “Em seguida, o gerente finaliza o pedido” marked as
inserted with index 1. In other words, to update the original text it would be needed
to insert the string as the second sentence in the original text, and shift forward all
remaining sentences. In this case, the sentence “Finalmente, o processo

é terminado” index would be shifted from 1 to 2.

The development of the textual diff consisted of three main classes, which are de-
scribed as follows:

• DiffAnalyzer: responsible for the heavy work during the diff analysis. It im-
plements the algorithms described above. In a nutshell, breaks the texts into sen-
tences, process the removals, insertions and then updates the original text applying
the changes detected. The result (output) is a list of differences (insert or remove)
between the texts’ sentences.

CHAPTER 3. THE ROUND TRIP APPROACH 69

• SentenceDiff: domain object responsible for storing the sentence data (i.e.,
String) that was changed, the type of operation performed (insert or delete) and the
index where the operation should be performed in the original text.

• SentenceOperationType: enumeration (enum data structure) which lists the
supported operations. Current values are: insert and delete.

3.4.2Updating the original process model

After having identified the sentences which must be synchronized with the original
process model (e.g., removed or inserted), the process information is derived from the
text sentence using the techniques described in Section 3.3.3. Afterwards, with the Sen-
tenceText instance, the process’ properties are extracted and passed to the next module,
which is responsible for updating the ProcessModel object and all the related objects in-
stances, if necessary. Three specific scenarios for updating links6 between process model
elements exist. Table 3.6 depicts these scenarios, which are roughly the same as inserting
elements into a linked list data structure [25].

Table 3.6: Overview of Operations for Updating Links
Element Position Result (Delete Operation) Result (Insert Operation)

First (e.g., index=1)
Before: A -> B
After: B

Before: A -> B
After: A’ -> A -> B

Middle (e.g., 1 < index < n)
Before: A -> B -> C
After: A -> C

Before: A -> B -> C
After: A -> B -> B’ -> C

Last (e.g., index=n)
Before: A -> B
After: A

Before: A -> B
After: A -> B -> B’

The first scenario consists of inserting a new element as the first element within the
process pool. In this case, all the elements must be shifted forward. This is done by
adding a link between the new element and the previous first element. To illustrate this
strategy, suppose that you have three activities: A -> B -> C. A new activity “NEW” must
be inserted into the first position. In order to do so, the first activity must be located. In
this example, the first activity is represented by “A”. Then, a link is created between the
“NEW” activity and the first activity “A”. By doing so, activity “NEW” has become the
first activity from the sequence, as follows: NEW -> A -> B -> C.

The second scenario consists of inserting a new element between the first and last
element within the process pool. To illustrate this strategy, suppose that you have three

6In this case, links represent the sequence flow elements (arrows) that connects each process model
element to the next one.

CHAPTER 3. THE ROUND TRIP APPROACH 70

activities: A -> B -> C. A new activity “NEW” must be inserted into the second position.
Then, the activity located into the previous position must be found. In this example the
previous position corresponds to the first, which is occupied by activity “A”. Activity “A”
is linked to activity “B” (A -> B), but now it must be updated so that its link points to the
“NEW” activity (A -> NEW). Afterwards, the “NEW” activity link is created pointing to
activity “B” (NEW -> B). The result would be four activities: A -> NEW -> B -> C.

The third scenario consists of inserting a new element as the last element within the
process pool. In this case, all the elements must be shifted backward. This is done by
adding a link between the new element and the previous last element. To illustrate this
strategy, suppose that you have three activities: A -> B -> C. A new activity “NEW” must
be inserted into the last position. First, the last activity must be located. In this example,
the last activity is represented by “C”. Then, a link is created between the last activity “C”
and the “NEW” activity. By doing so, activity “NEW” has become the last activity of the
sequence, as follows: A -> B -> C -> NEW.

Reflecting deleted elements to the original model Reflecting deleted sentences, that
represent activities, back to the original model is quite straightforward. Through the pro-
cess elements properties (obtained from the SentenceText), the algorithm searches for the
respective process element in the original model. When the original element is found, it
is removed from the model and the links are updated. If no such element is found, then
the operation was performed successfully. To remove only a business object from an ac-
tivity, it is necessary only to remove the business object from the sentence and not the
whole sentence itself (otherwise it would remove the whole activity). By doing so, the
algorithm is capable of updating the original sentence by removing the business object
from the activity’s label.

Note that to remove a role (i.e., actor) from the original model, it is necessary to remove
all the references (activities) to it. This is done by removing all the sentences which the
role is the main object or by replacing it by another role, which would transfer all the
activities to this second role and remove the role’s lane from the original model. The
example below illustrates this scenario:

1. Original Text: The process begins when the secretary answers

the call. Afterwards, the customer requests the or-

der status. Then, the intern checks the order status.

The secretary informs the order status. Afterwards the

intern writes down the message. Finally, the process

CHAPTER 3. THE ROUND TRIP APPROACH 71

finishes.

2. Changed Text: The process begins when the secretary answers

the call. Afterwards, the customer requests the order

status. Then, the secretary checks the order status.

The secretary informs the order status. Finally, the

process finishes.

3. Updated Model: Figure 3.18 illustrates this procedure. In this example, the role’s
references were removed by replacing the first occurrence of the role “intern” by
“secretary” and removing the remaining activity, which the intern participates.

Figure 3.18: Original process model and its updated version, after having textual changes
reflected to it.

Reflecting deleted sentences that represent gateways back to the original model is a lit-
tle bit tricky. Through the process elements properties (obtained from the SentenceText),
the algorithm searches for the respective process element in the original model. When the
original element is found, it is removed from the model. Until this point, it is basically the
same as removing an activity. But, the problem arises when the links must be updated.
A gateway represents a control-flow, thus removing the gateway, the control-flow is re-
moved. As a result, instead of having activities executed in parallel or executed under
certain conditions, the related activities must appear sequentially after removing the gate-
way. To solve this problem, a simple criteria was adopted. The first sentence, related to
the gateway, takes the gateway position in the original model, its link is updated to the
next related sentence and the next sentence’s link is updated to the next and so on. The
example below illustrate this scenario.

1. Original Text: The process begins when the Room-Service Man-

ager takes down order. Then, the process is split into

the 3 parallel branches:

CHAPTER 3. THE ROUND TRIP APPROACH 72

• The Room-Service Manager gives order to the Somme-

lier.

• The Room-Service Manager submits the order ticket to

the kitchen.

• The Room-Service Manager assigns order to the waiter.

2. Changed Text: The process begins when the Room-Service Man-

ager takes down order. The Room-Service Manager gives

order to the Sommelier. The Room-Service Manager sub-

mits the order ticket to the kitchen. The Room-Service

Manager assigns order to the waiter.

3. Updated Model: Figure 3.19 depicts the original and the updated version of the
model after the text changes were automatically reflected to it.

Figure 3.19: Original process model and its updated version, after removing a gateway
sentence from the text.

Reflecting inserted elements to the original model Reflecting new sentences, back to
the original model is not so straightforward as deleting. First, the new process model ele-
ment is created from the sentence. Then, its link reference must be set to the next process
model element. The question that arises is to find the exact position where the element
should be inserted. This is done through the text analysis performed by the DiffAnalyzer.
As can be seen in Section 3.3.2, the text structure makes possible to map the activity se-
quences and all the related elements in the correct order. The algorithm is capable of
positioning the element into the correct lane (role) by querying the sentence’s business
actor. Figure 3.20 illustrates this procedure.

If the sentence does not represent an activity, a simple criteria is applied: the element
is disposed into the previous element’s lane. Figure 3.21 illustrates this procedure. If
there is not any previous element, then it is randomly allocated into one of the available

CHAPTER 3. THE ROUND TRIP APPROACH 73

lanes. The exception is for gateway elements. Based on process modelings guidelines, this
kind of process model element should not be the first process element 7. These scenarios
are thus considered as modeling errors by the framework and automatically rejected. An
error message is shown for the user suggesting that gateways should not be used as the
first process element.

Figure 3.20: Activity Insert: Original process model and its updated version, after having
textual changes reflected to it.

Figure 3.21: Gateway-And Insert: Original process model and its updated version, after
having textual changes reflected to it.

3.5Framework’s activities sequence

Apart from some intermediate auxiliary components, Figure 3.22 shows the sequence
of activities executed by the system during the process of generating text from a business

7It is considered a good practice always to start the process with a begin event element. The begin event
element should always be the first element within the process pool/lane.

CHAPTER 3. THE ROUND TRIP APPROACH 74

process model. The diagram steps are detailed as follows:

• Step 1: The sequence is triggered when a user, with some file that represents a busi-
ness process model, asks for the system to read it. In this work, the JSON extension
was chosen to be the in-memory representation of the process model. In this mo-
ment, an object from the JSONReader class is created, which main responsibility
is the transformation of the information within the JSON file in some compatible
process model structure. The object returns a process model object.

• Step 2: With the model, the user asks for the transformation of this model in its re-
spective natural language text form. This is done through a static class responsible
for calling, sequentially, all the NLG components present in the pipeline architec-
ture.

• Step 3 and 4: The language of the model is read from an attribute of the process
model that identify the language used in its construction. As soon as the language
is detected, the specific linguistic component is activated (Step 3), initializing all
the objects with their respective implementations to treat the current language, as
well as the necessary configuration for the localization component (Step 4). The
localization component is a module responsible for the translation of the words and
specific sentences, saved as generic keys of the dictionary. The keys are stored as a
set of enumerations (enum data structure), where each item must have its respective
translation for the current language. In order to do that, the user must store the
translations of each given key in some external file. For example, regarding the
Portuguese language, when the key ”PROCESS_BEGIN_WHEN” is detected, the
translated message “O processo começa quando” is returned.

• Step 5: Afterwards, it is necessary to transform the current process model structure
in some intermediate graph-based structure, where each arc is transformed to an
edge and each node is some process element, such as event, gateway, task, etc.

• Step 6: The RPST tree is created from the graph with all the necessary linguistic
information in order to generate the text.

• Step 7: After that, the root of the tree is used as starting point to the generation of
all the DSynt trees that will represent, in a textual way, the several activities and
components (gateways, events) from the process model. When this step is finished,
we already have some textual representation of the process model. But, this repre-
sentation is yet to be improved (in order to be readable), due to some grammatical
issues and redundancy.

CHAPTER 3. THE ROUND TRIP APPROACH 75

• Step 8: The first phase in the treatment of the text is the aggregation of the mes-
sages. This component returns the messages grouped by some criteria, for example,
performed by the same actor (role) in some strict sequence.

• Step 9: The second phase corrects some of the problems resulted from the aggrega-
tion of the messages through a component that inserts referring expressions. As an
example, it executes the replacement of the repeated role name (actor) in the same
sentence for its respective pronoun, in order to obtain a better readability.

• Step 10: The third phase is responsible for the addition of sequence connectives to
the several sentences to connect them semantically within the text. For example,
the sentences “Garçom entregar pedido.” and “Cozinha preparar comida.” would
be connected through the expression “Em seguida”. “Garçom entregar pedido Em
seguida Cozinha preparar comida”. Note that the use of articles, punctuation and
verb conjugation is incorrect. This will be solved in the next step.

• Step 11: The fourth and last phase has as main goal correct the grammatical errors
present in the resulting sentences from the transformations, in order to generate a
fluid and coherent text. In this component, occurs, for example, the transformation
of the sentence “Garçom entregar pedido. Em seguida, cozinha preparar comida”
into “O garçom entrega o pedido. Em seguida, a cozinha prepara a comida”. After
the correction of all the messages within the Dsynt trees has been done, the compo-
nent performs the concatenation of the messages and returns a text to the user, that
represents the process model in natural language text.

C
H
APTER

3.
TH

E
RO

U
N
D
TRIP

APPRO
AC

H
76

Figure 3.22: Sequence diagram representing the steps to generate text from model.

CHAPTER 3. THE ROUND TRIP APPROACH 77

Apart from some intermediate auxiliary components, Figure 3.23 shows the sequence
of activities executed by the system during the process of updating a business process
model through a natural language text. The update process starts with the user searching
for a business process through its respective name. If the process is found, then he must
choose whether he wants the process’s text version or the model version. After choosing
the text version, the user update the text and submits the updated text as input for the
system. Then, the system starts executing the following steps:

• Step 1: A new RealizedText is created. A query for the original text is submmited
to the database and both, the original and the updated text, are stored within the new
RealizedText object.

• Step 1.1: The method cleanText is called to begin with the pre-processing phase,
which will remove any unnecessary data from the text.

• Step 1.2: The removeFormattingmethod from the ITextFormatter concrete imple-
mentation is called. This method recieves a plain text as input and returns the text
without any formatting character.

• Step 1.3: The removeStopWords method from the ITextFormatter concrete imple-
mentation is called. This method recieves a plain text as input and returns the text
without any unnecessary words (i.e., stop words).

• Step 1.4: For each sentence stored within the RealizedText object, the system calls
the identifyChanges method to assert whether or not that sentence was modified
compared to the original sentence. During this step, the system also identifies the
operation type (edit, add or delete). In particular, each sentence is stored in a Sen-
tenceText object.

• Step 1.5: If the sentence has been changes, the operation type is setted for that
particular sentence.

• Step 1.6: With the operation type already configured, the system calls the update
method.

• Step 2: After the update method from the SentenceText object is fired, a new in-
stance of the NaturalLanguageProcessor is created for the current language (e.g.,
English, Portuguese, German etc.).

• Step 3: Afterwards, the main NLP techniques are used to (i) identify which BPMN
element(s) does the sentence represent(s), and (ii) extract and store the BPMN ele-
ment’s specific properties (as described in Section 3.1.1).

CHAPTER 3. THE ROUND TRIP APPROACH 78

• Step 4 and 5: The BPMN properties are obtained through the NaturalLanguePro-
cessor and is then passed to the update method of the DSnyT data strcuture.

• Step 5: After theDSynT’s updatemethod is triggered, it fires another updatemethod
for the ProcessModel object. At this moment, the update method called is specific
to each BPMN element type (e.g., Activity, Gateway, Event etc).

• Step 6: Finally, after updating all specific elements, the whole process model is also
updated. At this moment, both text and model, are synchronized regarding business
process information.

C
H
APTER

3.
TH

E
RO

U
N
D
TRIP

APPRO
AC

H
79

Figure 3.23: Sequence diagram representing the steps to update the model from changes in its text representation.

CHAPTER 3. THE ROUND TRIP APPROACH 80

3.6Chapter Summary

This chapter presented the details about the proposed round-trip technique, ex-
plaining how it was implemented within a language-independent framework. The tech-
nique makes use of several NLP and NLG techniques, applied in a specific sequence
through a pipeline structure. The NLG pipeline is used to generate textual representa-
tion from a process model, while the NLP pipeline is triggered to generate process model
from natural language text. With the definition of a synchronization component, capable
of identify and classifying textual changes within the text according to the set of basic
change operations mapped by Weber et al. and Kolb et al., it was possible to run the
complete round-trip. The following chapter describes the round-trip technique
evaluation through controlled experiments and a case study.

4. Evaluation

This chapter presents the evaluation of themethods developed and implementedwithin
the language-independent framework. One evaluation was design and executed by the au-
thors with a small set of business process models to evaluate the framework’s behaviour.
Afterwards, some research questions were defined to serve as a guide during the execution
of an experiment, which objectives were to validate and evaluate the natural language text
produced as the framework output when given a process model instance as input. Basi-
cally, it was an exploratory research to investigate weather the generated text is capable of
transmitting the same knowledge as compared with a Business Process Model. Finally, a
second experiment was run to evaluate the synchronization components through editions
made to the original text and asking the business process expert to evaluate whether the
changes were reflected correctly to the original process model.

4.1PoC: Proof-of-Concept

This evaluation aimed at validating thewhole round-trip implementedwithin our frame-
work. In other words, we were interested in automatically generating process textual de-
scriptions from process models and asserting that that the original process model could be
updated by submitting text-based changes to the synchronization component.

Basically we conducted a two-step evaluation. At first, artificial data were generated,
which represented an experiment. This experiment was composed by ten (10) exclusively
made-up models1 (designed by the authors) to stress specific conditions (i.e., scenarios)
that should be covered by our solution. For example, the framework should be able to treat
all the BPMNelements defined in our subset (Figure 2.3) and support all change operations
presented in Table 3.5. The framework was designed to support multiple languages, thus
the set of process models were written in both English and Portuguese.

1This set of process models (artificial data) are available in the Appendix B

81

CHAPTER 4. EVALUATION 82

With this strategy, it was also possible to test if the framework could deal with a dy-
namic language change in the process model received as input during execution time,
initializing the necessary configurations to trigger the right implementations to extract
the process semantic within the model. The language detection is identified through a
meta-data in the process model, which informs the language used to design it. The tool’s
behavior was evaluated and the system was observed in different scenarios: process mod-
els composed by activities without any control flow logic and process models composed
by activities with control flow logic (gateways AND, XOR and parallel). These models
presented variations of important characteristics for the evaluation, which were:

• Activities being executed in sequence by the same actor (role). These activities
should activate the module of “Referring Expression” and “Message Aggregation”
defined in Section 3.2.2. For this reason these activities are essential to illustrate the
framework usage.

• Activities without roles (empty lane). These activities are justified by the need to
test if the algorithm responsible for treating activities without actors are correctly
mapped to a textual description using passive voice.

After the initial evaluation with artificial data, real data was used through a second
set of business process models2 gathered from universities and from companies to stress
real scenarios. This second set was composed by twenty (20) process models written in
Portuguese. Thus, for each model an English translated copy was manually generated for
testing the language-independence framework’s feature.

In total, thirty (30) process models were used during the PoC evaluation, twenty (20)
from real case scenarios and ten (10) using artificial data. The overall characteristics of
these models are presented in Table 4.1. It is important to highlight that these characteris-
tics are shared by both, models and textual descriptions.

Table 4.1: Overall characteristics of the complete test data set.
Metric MIN MAX Average
Number of Actors 1 6 2,96
Number of Activities 2 40 11,68
Number of Control Flows 0 10 3,48

As can be observed, each process contained at least one (1) actor and no more than six
2Due to copyright reasons, the whole set is not available. Nevertheless, some process models are avail-

able in the Appendix B

CHAPTER 4. EVALUATION 83

(6) actors. In average, the whole data set contained 2,96 actors per process. Analogously,
each process contained at least two (2) activities and no more than forty (40) activities. In
average, thewhole data set contained 11,68 activities per process. Finally, not all processes
had control flow logic and had nomore than ten (10) control flowswithin the same process.
In average, each process contained 3,48 control flows.

Figure 4.1 depicts the methodology used for this evaluation (i.e., test) which is detailed
as follows:

1. The test begin by fetching a process model from our repository (step 1).

2. The process model is submitted as the framework’s input which generates a textual
description as its processing output (step 2). During this step, the output text was
compared with the model used as input and a set of text metrics was used to inves-
tigate in how far the generated texts are comparable to manually created texts. The
main component tested in this step is the NLG Core module.

3. If any errors were found then the test was interrupted and a new version was de-
veloped addressing these errors. After applying the correction (step 3), the process
model was resubmitted (step 2) to the framework. This procedure was repeated
until no critical error could be found. Before continuing to step 4, the generated
process textual description was submitted as the framework input to assert whether
the generated process model would match the original.

4. After asserting that no critical error could be found within the generated process
textual description, text-based operations were made to the generated text (step 4)
which was then submitted as the framework’s input (step 5). These operations are
better illustrated in the experiment described in Section 4.3.1.

5. The updated text triggers the synchronization component which generates an up-
dated version of the original process model based on the detected text changes (step
6). The new process model was analyzed to assert if any critical error could be
found. The main component tested in this step is the NLP Core module.

6. This step is very similar to the third (3) step. If any errors are found then the test is
interrupted and a new versionwas developed addressing these errors. After applying
the correction (step 6), the changed text was resubmitted (step 5) to the framework.
This procedure was repeated until no critical error could be found. Before contin-
uing to step 7, the updated process model was submitted as the framework input to
assert whether the automatically generated process textual description would match
the original.

CHAPTER 4. EVALUATION 84

Figure 4.1: Evaluation methodology used for the Proof of Concept.

7. Finally, after asserting that no critical error could be found within the updated pro-
cess model, the test was considered to be concluded successfully (step 7).

Another aspect to be taken into consideration is the evaluation of the framework re-
garding its capacity of extension to other languages. The necessary process to include a
new language, to treat business process models should be easy, fast and clear. With the
language-independent framework’s architecture, a lot of complex and common aspects
were abstracted, like the text planning phase and sentence planning phase. They do not
need to be modified, decreasing the necessary time and maintaining the focus into the
implementation of the operations defined in the interfaces, responsible to treat the lan-
guages. Appendix C details the necessary steps that must be followed to add support for
new languages.

The quality of the generated text is directly dependent on the quality of the imple-
mented operations for the current language. The Portuguese language does not yet has a
free and powerful Java library work with its linguistics aspect, as the English language
has WordNet. As a result, the coverage for Portuguese semantic and syntactical aspects is
not the same as for English.

The framework had a positive general evaluation, being capable of both: correctly gen-
erating natural language texts from business process models used as input and generating
process models from natural language texts. The framework was able to map and treat
all the components in the models, as well as their respective notations and labels used to

CHAPTER 4. EVALUATION 85

their description. The NLG and NLP pipeline process (Figure 2.10 and 3.12, respectively)
were followed without the detection of any error that could compromise the execution of
the process. However, some problems were found:

• The algorithm responsible for the activation of the referring expression and message
aggregation modules failed to identify correctly a sequence of activities performed
by the same actor. As an example, in the process model (Figure 2.4) used as input,
we can check in the generated text (Table 4.2) that the word “waiter” is frequently
used in the last paragraph. In this case, it should be replaced with the pronoun “he”.

• The coverage for business process in Portuguese is smaller than for English. This
is due to the fact that the English is more used globally and, as a consequence, there
are more resources and features for its linguistic manipulation.

Table 4.2: Natural Language Text generated by analyzing the process model data and
extracting textual information.

The process begins when the Room-Service Manager takes down an order. Then, the
process is split into 3 parallel branches:

• In case alcoholic beverages are ordered, the Room-Service Manager gives order to
the Sommelier. Afterwards, one or more of the following paths are executed:

– The Sommelier fetches wine from the cellar.

– The Sommelier prepares the alcoholic beverages.

• The Room-Service Manager submits the order ticket to the Kitchen. Subsequently,
the Kitchen prepares the meal.

• The Room-Service Manager assigns order to the Waiter. Then, the Waiter readies
the cart.

As long as all the 3 branches were executed, the Waiter delivers to the guest’s room.
Afterwards, the Waiter returns to the room-service. Subsequently, the Waiter debits from
the guest’s account. Finally, the process finishes.

We can state that the first problem does not affect the correct understanding of the
generated text. It affects only the quality of the generated text, because the reading of one
big sentence made up of several activities is more tiresome but still, understandable. As
we can see in the result of the process model used as input (Figure 2.4), we can understand
the text perfectly, and which information the model transmits.

CHAPTER 4. EVALUATION 86

As a result, we got evidences that our approach is capable of dealing with the dynamic
language change of the process model in execution time, automatically initializing the nec-
essary configurations and correctly generating a natural language text from the model and
also applying text-based changes back to the original model, through the synchronization
component.

4.2Experiment: Business Process Automated Description Quality

This experiment evaluates the text generated by the framework. It was an exploratory
research to investigate whether the generated text is capable of transmitting the same
knowledge as compared with a Business Process Model.

4.2.1Experiment Design

This section presents the design of the proposed experiment, including our research
questions, the instruments selected to address these questions, the participants, and the
measurements taken to: (a) Analyze the equivalence between textual description and pro-
cess models; (b) Analyze the textual description quality according to the subject’s per-
spective; and, (c) Compare how does the experience influences the comparison between
the textual description and the process model.

Research Questions The main objective of this experiment was Assess whether the
knowledge represented by the generated process description (i.e., textual work instruc-
tions) can be considered equivalent to the process model. Two research questions were
proposed to address this issue:

1. Is the knowledge represented by the natural language text, generated by the frame-
work, equivalent to the process model?

2. Can the natural language text, generated by the framework, need to be enhanced to
achieve better understanding?

Instrumentation An online questionnaire3 was used to collect the data for this experi-
ment analysis. The questionnaire was composed by: (i) a set of questions to characterize

3The questionnaire is available at https://docs.google.com/forms/d/1zvuuxojWUVWnyRpMsao-
F1Yjygs-Dm2ebfrMjjjJqx4/viewform

CHAPTER 4. EVALUATION 87

participant experience in process modeling; and, (ii) a set of seven (7) Text-Model pairs
(i.e., seven BPMN models and textual work instructions presented in pairs) describing
process fragments, followed by three questions. The first question’s objective was to rate
the equivalence between the textual work instruction and the BPMN model. The second
question aimed at evaluating the text quality, varying from very good to very bad. The
third question was optional and allowed participants to enter a free text regarding their
impressions about the generated textual work instruction.

Process fragments were chosen instead of whole processes in order to minimize the
time required for the participants to fill up the whole questionnaire. We believe a long
time response questionnaire would lead to fewer participants and could compromise the
study quality (i.e., whole process could not be comprehensible in a short time span).

The experiment was executed in several sessions, each involving a subset of our par-
ticipants. It is important to highlight that the experiment objective was not described for
the participants nor did they know about our research, thus avoiding possible bias while
answering the questions. The overall structure of a session was comprised by four (4)
steps. First, the questionnaire was electronically sent through e-mail. Next, the question-
naire was filled by the participants. Afterwards, the answers were collected and stored in
the database. Finally, the answers were analyzed and documented. No time restriction
was imposed to participants, either for analyzing the process fragment or for filling up the
questionnaire.

In any experiment, the results achieved after the execution phase are dependent on
how the data collection instruments are created. For this experiment, the instrument was
based on a digital questionnaire. This questionnaire was created in accordance to several
guidelines in order to reduce the chances of introducing poorly phrased questions [7, 9, 99].
Special attention was paid when creating the set of questions because of the awareness
that answers to poorly phrased questions may be worse than meaningless: they may be
misleading.

The characteristics of the used instrument’s elements are described below. They were
originally written in Portuguese and all participants spoke Portuguese as their native lan-
guage. For the purpose of consistency with the remaining text, we present English trans-
lated versions of the original elements.

Participants Characterization Questions: This set of questions aimed at identifying
the profile and experience of the participants with process modeling and the BPMN no-
tation. It was composed by four close-ended questions presented in Table 4.3. Questions

CHAPTER 4. EVALUATION 88

were answered according to a 5-point ordinal scale (i.e., likert scale) list. These questions
addressed whether the participant was familiar with process modeling and BPMN nota-
tion. These questions were elaborated to obtain detailed and specific information about
the participant’s experience related to process modeling, avoiding subjective answers. The
ordinal scale was used to specify the participant’s level of agreement or disagreement with
a series of statements about business process modeling. This way we could assert the par-
ticipant’s confidence about a particular topic related to process modeling. Ordinal scales
(usually with five or seven symmetrical points) are frequently used in survey research and
have been shown to reliably measure mental effort [10] [91].

Process Fragment: Text-Model Pair. The text-model pair aimed at rating the equiv-
alence in terms of the information transmitted by both. Each pair was composed by a
BPMN model and textual work instructions generated by the framework. Figure 4.2 de-
picts one exemplary of the text-model pair used by this experiment. A process fragment
was presented in order to minimize the time and to abstract the need for understanding
the whole process semantic. Hence, isolating any domain knowledge that the participant
might have about the process. Thus, the user can focus on short descriptions and fewer
symbols within a BPMN model. The process fragment was accompanied by three ques-
tions. The first question was answered according to a 5-point ordinal scale. This question
evaluated whether the participant consider both knowledge representations are able to
transmit the same information about the process fragment. The ordinal scale was used to
specify the participant’s level of agreement or disagreement with the following statement
“Both, text and model, are considered equivalent in terms of the process which they de-
scribe.”. The second question was also answered according to a 5-point ordinal scale and
aimed at evaluating the textual description quality. Finally, the third question was optional
and answered as a free text. This question aimed at gathering qualitative data to enable an
open exploratory research about the comparison between the text-model pair.

Participants Several instances of the same instrument (described in the previous sec-
tion) were given to the participants. In total, 66 participants were selected to participate
(9 students, 8 professors and 49 practitioners). Students and professors were from the
following universities: Federal University of the State of Rio de Janeiro (UNIRIO), State
University of Rio de Janeiro (UERJ) and Federal University of Rio de Janeiro (UFRJ)).
Practitioners were from different IT companies located in Rio de Janeiro (Brazil). For
the purpose of analysis, a more complete classification of participants into experienced or
non-experienced, based on all answers given to the characterization questions (see table
4.3), was developed and used.

CHAPTER 4. EVALUATION 89

Table 4.3: Questions about the participant’s experience with process models (characteri-
zation).

Questions and Options
1 - Overall, I am very familiar with process modeling.
a. Strongly disagree | b. Slightly disagree | c. Neutral | d. Slightly agree | e. Strongly agree
2 - Overall, I am very familiar with the BPMN notation.
a. Strongly disagree | b. Slightly disagree | c. Neutral | d. Slightly agree | e. Strongly agree
3 - I feel very confident in understanding BPMN process models.
a. Strongly disagree | b. Slightly disagree | c. Neutral | d. Slightly agree | e. Strongly agree
4 - I feel very competent in using BPMN for process modeling.
a. Strongly disagree | b. Slightly disagree | c. Neutral | d. Slightly agree | e. Strongly agree

Figure 4.2: A text-model pair describing a process fragment.

Measurements Results were gathered through the answers given by the participants in
the questionnaire: for each rating (i.e., 5, 4, 3, 2, 1) we counted the total number of answers
for the same rating. For example, we counted how many times option 4 was chosen,
how many times option 3 was chosen and so on. The instrument presented seven distinct
process fragments, with the same question accompanied by the same number of options
available to rate the equivalence between the process textual description and the process

CHAPTER 4. EVALUATION 90

Figure 4.3: A text-model pair describing a process fragment, which is not equivalent.

graphic model (BPMN). Thus, this give us a total of seven (7) answers per participant.
As we have 66 participants, this is equal to 462 (66 x 7) answers considering all process
fragments.

Process EquivalenceMeasurement (RQ1): Our accuracy was measured by the num-
ber of correct answers. Due to the text being sensible to an open interpretation (it is not
represented by a formal representation language, such as BPMN, thus may generate ambi-
guity), we did not expected both representations to be 100% equivalent. Instead, we claim
a threshold varying from 100% to 70% can be considered as a good result for the sake of
this analysis.

We sum the quantity of answers given to the same option, regardless of the process
fragment being analyzed. This allows us to have a general overview of the evaluation.
Nevertheless, a secondary analysis, which considered answers only to the same process
fragment was made and is described in details in Section 4.2.2. In the instrument, “Totally
disagree” and “Totally agree” options were equivalent to extreme points (0 and 100, re-
spectively). We grouped the answers for options “Totally disagree” (0% equivalent) and
“Slightly disagree” (Equivalence between 1 and 33%) into one, which give us an equiva-
lence rating ranging from 0 to 33%. Analogously, we did the same for the options “Slightly
agree” (Equivalence between 68 and 99%) and “Totally agree” (100% equivalent), which

CHAPTER 4. EVALUATION 91

Table 4.4: Question about the equivalence between the textual work instruction and the
BPMN model, which describes a process fragment.

Question and Options
Both, text and model, are considered equivalent in terms
of the process which they describe.
a. Totally disagree (0% equivalent)
b. Slightly disagree (Equivalence between 1 and 33%).
c. Neutral (Equivalence between 34 and 67%).
d. Slightly agree (Equivalence between 68 and 99%).
e. Totally agree (100% equivalent).

Table 4.5: Question about the textual work instruction quality, which describes a process
fragment.

Question and Options
How would you rate the quality of the textual description,
varying from 1 to 5 (where 1 stands for horrible and 5 excellent)?
1. (horrible) | 2. (very bad) | 3. (acceptable) | 4. (very good) | 5. (excellent)

give us an equivalence rating ranging from 68 to 100%. Doing so, we shorten our anal-
ysis into three groups. The optimal scenario would be all answers (from the total of 462
answers) were within the first group (which vary from 100% to 68%) and the worst case
scenario would be all answers were within the third group (which vary from 33% to 0%).
The counting process was performed by a specialized software from Google, known as
Google Forms 4.

The third text-model pair used in the instrument was designed in order to be not equiv-
alent. So, for this particular fragment, we expected more participants would answer that
both representations were not equivalent regarding the knowledge which they represent.

Textual Description Quality Measurement (RQ2): Our expectation (i.e., the opti-
mal scenario) was that the number of answers for the textual quality description between
5, 4 and 3 (inclusive) be higher than the number of answers between 2 and 1. The worst
case scenario would be the reverse, with more answers between 2 and 1 than answers be-
tween 5, 4 and 3. To be more more precise, we expected that at least 70% of the answers
were within the first group (answers between 5, 4 and 3), which we defined as a threshold
for a great result.

4For more information about Google Forms refer to https://www.google.com/forms/about/.

CHAPTER 4. EVALUATION 92

Tomeasure the result for RQ2, we applied the same strategy used to measure RQ1 (i.e.,
sum the quantity of answers given to the same option). Thus, to enable a better reading of
the results, we grouped the answers for options “Very Bad” and “Horrible” into one group.
All the remaining answers (options “Good”, “Very Good” and “Excellent”) were grouped
into a second group. We considered the reverse strategy for the third fragment, which had
errors inputted on purpose. So for this case, the sum of answers between 1 and 2 should
be higher than the sum of answers between 3 and 5. Analogously, we did the same for
answers between 3 and 5, which was grouped together with answers between 2 and 1 from
the others fragments. In other words, for the third fragment we mapped “Horrible” and
“Very Bad” to “Excellent” and “Very Good”, respectively.

4.2.2Analysis and Discussion

This section presents the compiled results of the analysis of the data gathered. It is div-
ided into four subsections, which address the research questions defined in the experiment
design (Section 4.2.1) and discuss threats to the validity of the proposed experiment.

Overall Evaluation To address RQ1 (Section 4.2.1), we were interested in determining
howmany answers were within the equivalence range varying between 100 and 68%, how
many were between 67 and 34% and finally how many were between 33 and 0%. Our ex-
pectation was that the number of answers between 100 and 68% were higher than the sum
of the other two groups (participants who rate equivalence between 67 and 0%), except
for the third process fragment, which the expectation was the reverse (number of partici-
pants that rate equivalence between 67 and 0% higher then the number of participants who
hate equivalence between 100 and 68%). Figure 4.4 depicts the overall evaluation for this
question.

As can be observed, 342 answers were within the equivalence group ranging from
100% to 68%, which can be read as “74% of the participants claim that the equivalence be-
tween both knowledge representations vary from 100% to 68% 5”. It is a great result since
the textual representation is written without any formal structure; therefore, encompassing
ambiguity and open interpretations. We argue the chosen text structure can achieve the
expected results, which is to transmit the process knowledge through a natural language
representation. Based on this, the answer for RQ1 is: “The knowledge represented by the
natural language text, generated by the framework, can be considered equivalent to the
process model.”

5Each participant contributed with seven (7) answers, thus if we divide the total number of answers by
seven (342/7) it give us the average number of participants that choose the same answer (48 participants)

CHAPTER 4. EVALUATION 93

Figure 4.4: Subject’s answers distribution among equivalence intervals.

For RQ2, we were interested in determining howmany subjects claim the textual qual-
ity can be classified as “Excellent”, “Very Good”, “Good”, “Very Bad” or “Horrible”. Our
expectation was the sum of answers varying from“Excellent”, “Very Good” or “Good”
were higher than the sum of all the others. Figure 4.5 depicts the overall evaluation with-
out any grouping criteria, while Figure 4.6 depicts the overall evaluation for this question
with the grouping criteria.

Analyzing the graphic depicted in Figure 4.6, 404 answers were within the first group
(ranging from “Good”, “Very Good” and “Excellent”). The result can be read as “86%
of the participants claim the textual description quality vary from Good, Very Good and
Excellent 6”. This can be considered a great result regarding our threshold, which was that
70% of the answers were within the first group.

Isolating the analysis for each process fragment This Section presents the evaluation
regarding each process fragment. Figure 4.7 depicts the evaluation for RQ1, while Figure
4.8 depicts the evaluation for RQ2.

Figure 4.7 presents there is not much variation from one process fragment to another,
6Each subject contributed with seven (7) answers, thus if we divide the total number of answers by seven

(404/7), it give us the average number of subjects that choose the same answer (57 subjects).

CHAPTER 4. EVALUATION 94

Figure 4.5: Participant’s answers distribution among five groups (Ungrouped).

Figure 4.6: Participant’s answers distribution among two groups (Grouped).

with the exception for the third process fragment. As mentioned earlier (Section 4.2.1),
the expectation for the third process fragment was that the number of answers within the
third and second group were higher that the number of answers within the first group.
We got 19 answers for the first group, 3 answers for the second group and 44 answers
for the third group, which give us: group 3 (44 answers) + group 2 (3 answers) > group
1 (19 answers) = 47 answers > 19 answers. Thus, the subjects were capable to iden-
tify the flaws in the third fragment with a good accuracy (68%). If we sum the answers
percentage for group one, for each process fragment (excluding the third fragment) with

CHAPTER 4. EVALUATION 95

the percentage for group three for the third fragment and then divide the result by all the
seven fragments, we should have the average for the knowledge representation between
both representations. The final average is of 74%, which is 4% higher then our minimal
threshold (70%). Therefore, textual work instructions are capable to represent the same
knowledge that the model represents, within an acceptable difference due to the informal
and lower abstraction given by the text format.

Figure 4.7: Chart that shows subject’s answers distribution among the options available
regarding the textual description quality.

Figure 4.8 presents there is not much variation from one process fragment to another,
with the exception for the third process fragment also for RQ2. We got 41 answers within
options four and five and 25 answers within options one, two and three. Thus, the subjects
were capable to identify the flaws in the third fragment. Nevertheless, we expected that the
difference among these two groups were higher because it means that 38% of the subjects
claims that the textual quality vary from good to excellent. We argue this happen due to
the abstraction undertaken by the subjects. It seems that most of the subjects were capable
to abstract the model and analyze only the textual quality according to its structure. Un-
fortunately, we do not have enough data to assert this hypothesis, thus it can be answered
by a future experiment. If we sum the answers percentage for group one (sum of answers
for options 1 to 3) , for each process fragment (excluding the third fragment) with the
percentage for group two for the third fragment and then divide the result by all the seven
fragments, we should have the average quality for the textual representation. The result is
an average of 86% of answers for group one, which can be read as: “86% of the subjects
claim the textual description quality vary from Good, Very Good and Excellent”. This
indicates the chosen textual format is good. This result is aligned with what we expected
due to the use of NLG techniques (e.g., Discourse Marker insertion, Referring expression
generation) which are capable of enhancing the text and improve its readability. We also

CHAPTER 4. EVALUATION 96

think that the use of bullets and indentation also contributed for the good evaluation.

Figure 4.8: Chart that shows subject’s answers distribution among the options available
regarding the textual description quality.

Subjects Experience Evaluation We believed that users with limited experience in pro-
cess modeling would better understand a process if it was described as textual work in-
structions instead of a BPMN process model. On the other hand, experienced users would
better understand a process if it is depicted through a model instead of textual work in-
structions. Thus, experienced users would give a lower rate when asked about equivalence
between both representations. We were also interested in investigating whether the sub-
ject’s experience with process modeling could influence the overall evaluation described
in Section 4.2.2.

To address this evaluation, subjects’ experience must be analyzed and subjects must be
classified into groups that represent different levels of experience with process modeling.
To accomplish this, we prepared a dataset with one entry for each subject and five columns.
The first column contained the subject identification number, a unique number for each
subject. The four remaining columns contained the answers given by the related subject
to the four questions comprising the characterization questionnaire (Section 4.2.1).

A clustering technique was applied upon the dataset to identify how many clusters
(groups) can be drawn from the sample [123]. The hierarchical clustering technique pro-
duced a dendrogram that was used to visually identify the clusters and the subjects dis-
tribution among these clusters [121]. The R mathematical software was used to run the
clustering technique. Figure 4.9 depicts two clusters identified after executing the tech-

CHAPTER 4. EVALUATION 97

Figure 4.9: Two clusters identified by the hierarchical clustering technique.

nique upon the data we have collected. The first cluster (in the left side) represents expe-
rienced subjects regarding process modeling and BPMN. The second cluster (in the right
side) represents inexperienced subjects. This technique can work with ordinal scale data,
which was used in the answers to the characterization questionnaire.

After having visually identified two clusters, we can then draw two separate analysis.
One for the experienced group and another for the inexperienced one, so that we are able
to analyze if experience with process modeling and BPMN notation can affect subjects’
answers significantly.

The first cluster represents experienced subjects and is composed by 37 subjects. The
second cluster represents inexperienced subjects and is composed by 29 subjects. Thus,
the number of experienced subjects suppress the number of inexperienced subjects by
8 which means that experienced subjects who participate in the experiment were 12%
higher than inexperienced ones. Taking into account the seven process fragments, the
experienced subjects contributed with 259 answers (37 subjects x 7 processes) while the
inexperienced subjects contributed with 203 answers (29 subjects x 7 processes).

Figures 4.10 and 4.11 presents low variations between both clusters. For the expe-
rienced subjects we had 192 (74%) answers for group 3, 14 (6%) answers for group 2
and 53 answers for group 1 (20%). For the inexperienced subjects we had 140 (69%)
answers for group 3, 36 (18%) answers for group 2 and 27 answers for group 1 (13%).
The highest variation (14%) were within the second group. Nevertheless, the number of
answers for this group (14 for experienced group and 36 for inexperienced group) cannot

CHAPTER 4. EVALUATION 98

Figure 4.10: Chart that shows experienced subject’s answers distribution among equiva-
lence intervals.

be considered expressive enough to influence the overall analysis. We can then conclude
that, regarding research question 1 (RQ1), the experience on process modeling does not
influence the overall analysis.

Figures 4.12 and 4.13 presents low variations between both clusters. For the experi-
enced subjects we had 220 (85%) answers for group 2 and 30 (15%) answers for group
1. For the inexperienced subjects we had 179 (88%) answers for group 2 and 24 (12%)
answers for group 1. Thus, we had on average 3% variation between the answers for both
clusters. This analysis indicates that, regarding research question 2 (RQ2), the experience
on process modeling does not influence the overall analysis.

4.2.3Threats to Validity

One possible threat to the study was the strategy chosen to present the processes to
the subjects. Due to time restrictions and to avoid an exhaustive questionnaire, we have
presented only process fragments and not whole processes. This may lead to misunder-
standings, because experienced subjects can detect lacks of important elements (e.g., be-
gin and end event). Nevertheless, we expected that this threat can be mitigated due to
the subjects’ abstraction ability, which help them focus on the analysis of the information

CHAPTER 4. EVALUATION 99

Figure 4.11: Chart that shows inexperienced subject’s answers distribution among equiv-
alence intervals.

Figure 4.12: Chart that shows experienced subject’s answers distribution among the op-
tions available regarding the textual description quality.

CHAPTER 4. EVALUATION 100

Figure 4.13: Chart that shows inexperienced subject’s answers distribution among the
options available regarding the textual description quality.

available instead of wondering about what is missing, and we have highlighted that the
process was not a complete one but just a extracted fragment from a complete process.

Another possible threat is the presence of answers that does not follow a logic pat-
tern. For instance, subjects that choose the same answers for all the process fragments,
indicating that they were not paying attention to some details. Due to the number of sub-
jects (67) we believe that this treat is mitigated, because this answers would not contribute
significantly when considering the whole analysis.

The question that arises now is whether these results are generalizable. To what degree
have we answered the proposed questions and closed the research gap? Unfortunately, we
can hardly expect to find a small set of business process which can be representative of
all the possibilities. There are also serious concerns about whether these results (already
equivocal enough) would scale up to large or smaller processes. We cannot present new
information to that question.

We are aware that besides understandability, there are other factors that are relevant
when choosing a format for business process descriptions. For instance, the structure
of both representations are taken into consideration through the premise that both must
follow specific design guidelines, which makes easier for the user to understand the pro-
cess [5] [80].

CHAPTER 4. EVALUATION 101

Regarding the process’s expressiveness we believe that the selected process model set
bears interesting characteristics for the proposed study. Additionally, the process cover
many basic symbols proposed by the BPMN notation. Notwithstanding, these character-
istics define a limited scope for which we have added a new piece of evidence by using a
systematic study procedure.

4.2.4Conclusion

In general, graphic notations are easier for business users to understand and use [50].
The models can make explicit several process’s patterns, flaws in process cycles and even
bottlenecks or deadlocks. But, it is required that all the people involved with the process
model have the necessary knowledge about the notation [62]. Besides, it is important
to define a set of business process models samples that could be used as guides for the
process model developers [62].

Two main conclusions can be drown from the study’s analysis. First, the textual work
instructions can be considered equivalent, in terms of knowledge representation, to process
models within an acceptable threshold (74% of the subjects claims that the equivalence
between both knowledge representations vary from 100% to 68%). Second, our evaluation
indicates that the chosen textual format is good (86% of the subjects claims that the textual
descriptions vary from excellent to good). This result is alignedwith what we expected due
to the use of NLG techniques like Discourse Marker insertion and Referring expression
generation, which are capable of enhancing the text and improve its readability. Besides,
we think that the use of bullets and indentation also contributed for the good evaluation.

Regarding the joint use of graphics and text to support understanding process models,
both kinds of representation can fit together.

4.3Experiment: Text-Model Synchronization

This experiment evaluates the synchronization strategy (Section 3.4) implemented
through the proposed framework. It was an exploratory research to investigate weather the
automatically updated model is capable of transmitting the same knowledge as compared
with the manually updated textual description. In other words, it aims to investigate if the
text-based changes reflected to the process model were consistent.

CHAPTER 4. EVALUATION 102

4.3.1Experiment Design

This section presents the design of the proposed experiment, including the research
questions, instruments selected to address these questions, subjects who participated in
the experiment, and the measurements taken to: (a) Analyze the equivalence between
the automatically updated process model and the manually updated textual description;
and, (b) Analyze the process model synchronization strategy according to the subject’s
perspective.

Research Questions The main objective of this experiment is Assess whether the know-
ledge represented by the automatically updated version of the process model, after been
synchronized by text-based changes, represents the same knowledge as the manually up-
dated textual description.

The following research question was proposed to address this issue:

1. Is the knowledge represented by the manually updated text equivalent to the auto-
matically updated process model?

Instrumentation An online questionnaire7 was used to collect the data for this experi-
ment. The questionnaire was composed by: (i) A set of questions to characterize subject
experience in process modeling; and (ii) A set of fourteen (14) Text-Model pairs describ-
ing the operation (i.e., change) made to the original text and the updated process model
fragment after the framework’s synchronization. Each pair was followed by two ques-
tions. The first question’s objective was to rate the equivalence, varying from Strongly
Disagree to Strongly Agree, between the text change and the model change based on it.
The second question was optional and allowed subjects to enter a free text regarding their
impressions about the synchronization strategy. The second question was designed to help
us in answering the following question: “How does the synchronization strategy, imple-
mented through the framework, can be enhanced to achieve better results? ”

The strategy for designing the questionnaire was roughly the same as the one described
in Section 4.2.1, including the same set of Characterization Questions (Table 4.3). Nev-
ertheless, the set of Text-Model pairs were not the same and is detailed below:

Process Fragment: Text-Model Pair. The text-model pair aimed at rating the equiv-
alence in terms of the information transmitted by both representations.

7Available at http://goo.gl/forms/JacmFbV3yTpPEfib2

CHAPTER 4. EVALUATION 103

First, a short description about the operation done to the text was presented to the par-
ticipant. Afterwards, the text fragment (before and after applying the changes) alongside
the model fragment (before and after having the textual change reflected to it) was pres-
ented. Figure 4.14 depicts one exemplary of the text-model pair used by this experiment.
The process fragment was accompanied by two questions. The first question, presented
in Table 4.6, was answered according to a 7-point ordinal scale. This question addressed
whether the subject considered that the synchronization strategy, applied for updating the
model through text-based changes, is consistent. The second question was optional and
answered as a free text. This question aimed at gathering qualitative data to enable an
open exploratory research (i.e., feedback) about the synchronization strategy.

Figure 4.14: A text-model pair which was used during the experiment.

Subjects Several instances of the same instrument (described in the previous section)
were given to the subjects. In total, 14 subjects were selected to participate. Subjects came

CHAPTER 4. EVALUATION 104

Table 4.6: Question about the process model synchronization after having changes made
to the original text.

Question and Options
The updated process model after the synchronization is consistent with
the text-based changes made, correctly reflecting the new process version.
a. Totally disagree
b. Disagree
c. Slightly disagree.
d. Neutral.
e. Slightly agree.
f. Agree
g. Totally agree.

from universities (e.g., Federal University of the State of Rio de Janeiro (UNIRIO), State
University of Rio de Janeiro (UERJ) and Federal University of Rio de Janeiro (UFRJ))
and from IT companies located in Rio de Janeiro (Brazil). As opposed to the experiment
described in Section 4.2, this experiment had only subjects with modeling skills and ex-
perience with process modeling. This justifies the lower number of subjects, as compared
with the first experiment evaluation.

Measurements Results were gathered through answers given by the subjects in the ques-
tionnaire: for each rating (varying from Strongly Disagree to Strongly Agree) we counted
the total number of answers for the same rating. For example, we counted how many
times option “Strongly Agree” was chosen, how many times option “Agree” was chosen
and so on. The instrument presented fourteen (14) distinct process fragments, with the
same question accompanied by the same number of options available to rate the synchro-
nization between the process textual description and the process graphic model (BPMN).
Thus, this give us a total of fourteen (14) answers per subject. As we have 14 subjects,
this is equal to 196 (14 x 14) answers considering all process fragments.

Qualitative data was gathered through the answers given by the subjects in the ques-
tionnaire: for each optional question, we collected the feedback data and filtered out an-
swers that could provide valuable insight to enhance the round-trip technique.

CHAPTER 4. EVALUATION 105

4.3.2Analysis and Discussion

This section presents the compiled result from the analysis of the data gathered. It
address the research question defined in the experiment design (Section 4.3.1) and discuss
some of the insights gathered from the analysis.

Overall Evaluation To address the proposed research question (Section 4.3.1), we were
interested in determining howmany answers were within the range varying from “Strongly
Disagree” to “Strongly Agree”. Our expectation was that the number of answers be-
tween “Strongly Agree” and “Slightly Agree” were higher than the sum of the other groups
(subjects who rate accordance with the synchronization strategy between “Neutral” and
“Strongly Disagree”). Thus, to enable a better reading of the results, we grouped the an-
swers for options “Strongly Agree” and “Slightly Agree” into one group. All the remaining
answers were grouped into a second group. Figure 4.15 depicts the overall evaluation for
this question.

Figure 4.15: Subject’s answers distribution among the available accordance options
(grouped into two groups).

As can be observed, 160 answers were within the equivalence group ranging from
“Strongly Agree” and “Slightly Agree”, which can be read as “78% of the subjects8 claims

8Each subject contributed with seven (14) answers, thus if we divide the total number of answers by
fourteen (160/14) it give us the average number of subjects that choose the same answer (11 subjects)

CHAPTER 4. EVALUATION 106

the knowledge represented by the manually updated text is equivalent to the automatically
updated process model”. It is a great result since the textual representation is written
without any formal structure; therefore, encompassing ambiguity and open interpretations.

Based on this, the answer for the proposed research question is: “The knowledge re-
presented by the manually updated text can be considered equivalent to the automatically
updated process model.”

Qualitative Evaluation As mentioned earlier, the second question was optional and
answered as a free text. Thus, allowing us to perform a qualitative analysis using the
feedback data provided by the subjects. The main goal of this qualitative evaluation was
to investigate whether the implemented synchronization strategy could be enhanced to
achieve better results.

From the whole set of possible optional answers (i.e., 196 answers), we had a total of
fifty (50) qualitative answers. From these fifty answers, we filtered out only answers that
could provide feedback about the synchronization strategy, leading to the final value of
fifteen (15) answers. The need of applying a filter is justified to narrow and prioritize the
framework’s enhancements that must be done. For example, there was feedback stating
that the process could bemore effective if the payment could be done by usingmoney. This
kind of feedback refers to how the process was designed and not to the synchronization
strategy illustrated in the experiment, which is the focus of the evaluation. Feedback about
process model elements disposition were considered as future work. There were also
several feedback praising the proposed technique and claiming that it could aid during the
modeling process. The most relevant feedback are grouped and discussed below:

• Case of First word’s letter does not follow a pattern: there were several feedback
about the usage of lower and upper case for the first word’s letter in the process
model activities. We think that the standardization of these scenarios can lead to
better models and thus enhancing the synchronization strategy.

• XOR Gateway “yes” and “no” labels are missing: after submitting new tests,
we confirmed that sometimes these labels were omitted from the updated process
model. A new version was developed to address this issue and is already imple-
mented within the current framework version.

• Reflect gateway description change to events: there were several feedback about
updating an event as a consequence of a Gateway description update. For illustration
purpose, consider the process fragment depicted by Figure 4.16. The XOR-Gateway

CHAPTER 4. EVALUATION 107

description is updated from “Region Supported?” to “Region has Deliver?” but
the end event description continues referring to the old condition (Region not sup-
ported). The optimal result would be to update the event description to “Region
does not has deliver” so that it matches the XOR-Gateway. Figure 4.17 illustrates
this scenario.

• Standardization of accentuation: there were accentuation problems found within
several words. This issue is under development and will be addressed in the next
framework’s version.

Figure 4.16: Process fragment which illustrates the scenario where an updated made to a
Gateway description should also trigger an event description update.

Figure 4.17: Process fragment which illustrates the optimal scenario where an updated
made to a Gateway also update the event description.

4.3.3Threats to Validity

The same threats described for the experiment (Section 4.2.3) also applies for this
experiment, due to the common characteristics shared by both.

The set of processes used was unique to each experiment and the second experiment
took place approximately six months after the first one. Thus, the experience that a par-
ticipant gained by participating in the first experiment is not likely to be representative
enough to be considered as a threat to validity.

During this experiment, a process model was updated several times through changes
made to the original text. Thus, it has been validated how the NLP pipeline (Section 3.3)

CHAPTER 4. EVALUATION 108

behaves in the scenarios described. This propose a threat to the round-trip validity, since
the updated model is not submitted as input to assert weather the automatically generated
text would match the original.

4.3.4Conclusion

Two main conclusions can be drown from the experiment’s evaluation. First, the
knowledge represented by the manually updated text can be considered equivalent to
the automatically updated process model after the synchronization within an acceptable
threshold (78% of the subjects claims that knowledge represented by themanually updated
text is equivalent to the automatically updated process model). Second, our qualitative
evaluation indicates several improvements that could help to achieve even better results.
From these set of improvements, some were already implemented into the latest release
while others were addressed as backlogs to be developed in future works. We have also re-
ceived positive feedback regarding the framework’s quality and usage potential. It is also
important to highlight that no critical error, that could compromise the synchronization
execution, has been found while running the experiment.

4.4Chapter Summary

This chapter presented details about the framework’s evaluation, explaining the rea-
soning behind each evaluation. In total, three evaluations were made. The first evaluation
was a PoC (Proof-of-Concept), which has as its main objective to validate the proposed
solution in a in-house environment and also validate the framework language-independent
features. Second, an experiment was conducted to assess whether the knowledge re-
presented by the generated process description (i.e., textual work instructions) can be con-
sidered equivalent to the process model. It also had as a secondary objective which was
to evaluate the quality of the natural language text produced by the framework. Finally, a
second experiment was conducted to assess whether the knowledge represented by the au-
tomatically updated version of the process model, after been synchronized by text-based
changes, represents the same knowledge as the manually updated textual description. The
following chapter describes works that are related to this master thesis scope.

5. Related Works

To the best of our knowledge, we are the first to propose a language-independent
framework that implements a round-trip technique capable of generating natural language
text from business process models and vice-versa. Due to its language independence, it
can easily be adapted to a wide range of languages and it is extensible to support multiples
text formats. Nevertheless, we were able to identify several related works that proposed
similar approaches to the one described in this thesis. These approaches can be grouped
into four (4) specific topics. These topics, and its related works, are better described in
the subsequent sections, while also comparing their differences against the approach de-
scribed by this thesis.

5.1Business Process Understandability

The field of process model understandability is discussed from different perspectives.
For instance, the results fromMendling et al. show that the number of arcs has an import-
ant effect on the overall model understandability [78]. In fact, many studies on process
model understandability have shown how complex the comprehension of process models
can be, even for people who are familiar with process modeling [81]. Toward addressing
this problem, Leopold et al. (2012) proposed a technique that can generate natural lan-
guage text from BPMN process models, which can increase process understanding for non
experienced users [62]. Mendling et al. demonstrates the impact of the natural language
in the activity labels for model comprehension [79]. A more general perspective is taken
by Zugal et al., where the authors investigate in how far the cognitive inference process
affects the model understanding [144]. The approach presented by Leopold et al. builds
on these insights as it tries to lower the overall burden of process model comprehension
[63].

There is a rich body of research on the pros and cons of visual diagrams in contrast

109

CHAPTER 5. RELATED WORKS 110

to natural language. The hypothesis by Larkin and Simon that, a diagram is sometimes
worth ten thousand words, has inspired this stream of research [57]. Their observation is
that text is limited to linear order while the spatial arrangement of different elements in
a diagram allows for a more efficient information processing, through inducing cognitive
processes such as visual chunking, mental imagery and parallel processing [139]. How-
ever, although the instructional and educational potential of graphical models are widely
acknowledged, in some cases, they are not always more effective than other methods of
representation. Usually, symbols of a graphical notations have to be learnt by readers in
order to be understood [116]. This fact is exactly what sets system analysts and domain
experts aside in terms of their model readership skills [62]. Therefore, training is required
before the benefits of a graphical notation can materialize. This is supported by findings
on considerable error rates in graphical process models [77, 42, 76]. The empirical find-
ings on the strengths and weaknesses of text and diagrams are diverging. Moher et al.
looked at several ways to express program structures in text and in Petri Nets, and state
that “graphics were no better than text, and in several cases were considerably worse” [85].
The results obtained by Shneiderman et al. are also aligned with Moher et al. findings
[115]. Shneiderman compared expressing program logic in flowchart and in program-
ming language text. He also found that there were no statistically significant differences
between the flowchart and non flowchart groups. By the contrary, in some cases the mean
scores for the non flowchart groups even surpassed the means for the flowchart groups.
Finally, also aligned with the aforementioned findings, Green et al. compares readability
of textual and graphical programming notations, and refused the hypothesis, that graphics
presentation would be superior. Actually, it was worse [41].

Prior work comparing process modeling notations can be roughly grouped into two
categories: (i) Graphical notation comparison; (ii)Textual versus graphical notation com-
parison. The first is the most prominent one. Several of these studies suggest expertise
is the most relevant factor in comprehension [19], but there is no absolute better or worse
representation. However, while process understanding and comprehension has been in-
tensively studied in recent research, there is a research gap on how the comprehension of
business process can be affected when the information is presented in natural language
text or a process model, according to the reader’s experience with process modeling.

In previous work we tackled this gap through an experiment with several students
and practitioners from the IT sector to address if there are significant differences in terms
of process understandability depending on whether textual work instructions or process
models are used to represent the process. Subject experience with process modeling is
also taken into consideration in our analysis, allowing to identify the influence that the

CHAPTER 5. RELATED WORKS 111

experience have over the understanding of the process.

There are also other related works that focus on comparing business process under-
standing using different approaches for presenting the information. For example, com-
pare declarative process models against a text based notation, using subjects that have
some experience in modeling declarative process [43]. Differently to that work, our re-
search used imperative process models, involved subjects whose experience with process
modeling vary from none to expert, and presented a natural language text simulating a
human description of the process [43].

While the experiment described by Ottensooser et al. compares model understanding
with written use cases (using the Cockburn format), we have used a more fluent and nat-
ural representation of the text [89]. More specifically, we considered a natural language
text which requires no background knowledge of layout or specific patterns. Also, our
research focus on process understanding while Ottensooser et al. focus on domain un-
derstanding through different representations. Nevertheless, our findings corroborates to
Ottensooser’s results which indicate that there is no significant superiority between using
graphical or textual notation for describing business process.

5.2Process Models to Textual Descriptions

It was also inspected related works where natural language techniques was used to
achieve BPM relevant goals or areas where the creation of process models was the focus.
The main challenge for generating text from process models is to adequately analyze the
existing natural language fragments from the process model elements, and to organize
the information from the process model in a sequential fashion. The below paragraphs
present several approaches that provided initial insights for the construction of the NLG
Core module architecture (Section 3.2).

The work presented by Leopold et al. describe an approach which automatically trans-
forms BPMN process models into natural language texts combining different techniques
from linguistics and graph decomposition [62]. It is based on the NLG pipeline defined by
Reiter and Dale [27]. The evaluation of the technique is based on a prototypical implemen-
tation and involves a test set of 53 BPMN process models showing that natural language
texts can be generated successfully. Following the same stream of research, Leopold et
al. proposed a new approach which supports process model validation through natural
language generation [63]. In this paper, the focus is using the generated texts for aiding
the domain experts in the validation task, given the diverging skill set of domain experts

CHAPTER 5. RELATED WORKS 112

and system analysts. Nevertheless, although the base generation technique has been intro-
duced, as opposed to our work both approaches do not support any other language besides
English nor provide features for updating the original process model through text based
changes made to the generated text. Another drawback is its architecture, which is not de-
tailed, making it difficult to be used or extended to fit specific needs that were not defined
beforehand.

5.3Textual Descriptions to Process Models

Goncalves et al. presents a method for deriving conceptual models from texts [24, 23].
The focus of this work was on the derivation of models from group stories, providing
a prototype which handles Portuguese texts. Participants of the process to be analyzed
are asked to write down their experiences. These texts are then interpreted using NLP
techniques and BPMN process models are derived. The approach was further tested with
a course enrollment process modeled by students. The examples of this paper show that
process models can be created successfully, but only a limited set of BPMN elements is
considered. Furthermore, a couple of their exhibits show that syntactical problems occur
in some cases. As opposed to this thesis, it does not provide support for other languages
rather than Portuguese nor is possible to customize the text pattern received as input. As
a consequence, different text patterns are not supported by the method.

Ghose et al. developed a system called RBPD [40]. The toolkit uses a syntax parser to
identify verb-object phrases in the given text and it also scans the text for textual patterns,
like If <condition/event>, [then] <action>.” [39]. The results are BPMN model snippets
rather than a fully connected model. Nevertheless, this toolkit does not only derive BPMN
snippets from unstructured text, but also takes existing model, e.g. an UML sequence
diagram, into account. As some of the models used as a source might be a graphical
representation of the texts which were also analyzed, a cross validation and check for
duplicates is performed.

Kop and Mayr proposed a procedure called KCPM (Klagenfurt Conceptual Predesign
Model) and developed a corresponding tool [52, 53]. It parses textual input in German and
fills instances of a generic meta-model, the KCPM. Using the information stored in this
meta-model an UML activity diagram and a UML class diagram can be created ([112] and
[31], respectively) . The transformation from natural language input to the aforementioned
meta-model is not a fully automated process, but rather semi-automated as a user has to be
involved in the process. Using the tool, the user has to make decisions about the relevant

CHAPTER 5. RELATED WORKS 113

parts of a sentence or has to correct the automatic interpretations. Therefore, as opposed
to our work, the proposed procedure does not leverage the full time- and cost-savings
potential.

In contrast to that, the approach described by Tao et al is fully automated [143]. It
uses use case descriptions in a format called RUCM [141] to generate UML activity and
class diagrams [142]. But, the system is not able to parse free-text nor to generate process
models. The RUCM input has to be in a very restricted format allowing only 26 types of
sentence structures and relies on keywords like “VALIDATES THAT” or “MEANWHILE”
to determine the semantics inherent in the text. Thus it cannot be used in an initial process
definition phase as it would require rewriting of all documents present in a company to
comply with the RUCM format. The main difference between Tao et al work and ours is
that our approach is able to support free-text parsing through the interfaces implementa-
tions and is capable of generating process models from texts.

Wang et al describes a procedure which creates a BPMN diagram, given that data
items, tasks, resources (actors), and constraints are identified in an input text document
[135]. Although the approach does not require a process description to be sequential, as
items are combined e.g. on their required inputs and outputs, it only supports a very lim-
ited set of BPMN elements. Pools, Data Objects, and Gateways other than an exclusive
split are not considered. A exclusive Gateway is not allowed to have more than two outgo-
ing arcs, reducing the space of available modeling constructs considerably. Furthermore,
user-interaction is required at several stages throughout the process. Compared to Wang
et al work, our approach does not require user-interaction during the parsing execution,
it supports 15 different BPMN elements (including Pools and Gateways) and does not
impose any restriction regarding the number of gateways’ outgoing arcs.

Another approach, which is similar to ours was presented by Sinha et al (2008), Sinha
et al (2010) and Kumanan et al. ([118, 117, 55], respectively). The authors of these
papers employ a linguistic analysis engine based on the UIMA Framework. The UIMA
Framework enables the constructions of linguistic analysis systems by combining different
blocks into a pipeline. Specifically, the following steps are mentioned: Texts are prepro-
cessed with a part-of-speech tagger in combination with a shallow parser. Afterward, the
words are annotated with dictionary concepts, which classify verbs using a domain ontol-
ogy created by the authors [118]. Then an anaphora resolution algorithms and a context
annotator, which determines the likelihood of an identified noun phrase to be an actor
in the system, is applied. The information is then transferred to a Use Case Description
metamodel and later into a BPMN process model. The focus of this system is the analysis
of very structured use-case descriptions. A single use case consisting of few sentences

CHAPTER 5. RELATED WORKS 114

is turned into a small process model. The authors then combine Subprocesses containing
these models into a def-use graph, which is subsequently optimized [119]. Unfortunately,
none of their works contains a full example text and model. Therefore, a verification of
their results and a comparison to our approach is not possible. Furthermore, the approach
can be regarded as text type specific as only use-case descriptions were used.

Leopold et al. also makes use of NLP techniques for integrating textual and model-
based process descriptions for comprehensive process search [64]. The exiting techniques
for automatically searching process repositories are limited to process models and many
organizations complement these models with textual descriptions. The main idea behind
this work is to enhance the process repository searches with the capability to search both,
textual as well model-based process descriptions. To this end, they propose a unified data
format that allows storing the information extracted from both process descriptions types
in a unified way. The information is extracted from exclusives model and text-based
parser developed by the authors. The format is implemented by building on the RDF1

(Resource Description Framework) Based on such format, it becomes possible to perform
search operations covering model-based and textual process descriptions. These opera-
tions are queries defined using SPARQL2 (Simple Protocol And RDF Query Language).
The evaluation of the technique is done with the process repository of an Austrian Bank.
It shows that using the proposed technique, it was possible to retrieve additional relevant
process models than using the available repository search techniques. The strategy of us-
ing intermediate data structures for storing process semantic data is also applied in this
master thesis (Section 3). As opposed to Leopold’s approach, our framework is capable
of parsing process models and generating textual process descriptions from this models.
It is also capable of parsing textual descriptions and reflecting changes made to it back
to the process models. Besides, Leopold’s approach is language specific, whereas our
framework can deal with multiple languages. Despite the feature of searching process
descriptions was not the focus of this thesis, we believe that our framework could be en-
hanced to support process model querying through the intermediate structures shared by
both knowledge representation formats (i.e., text and model-based descriptions).

Finally, the approach described by Friedrich et al., proposes an automatic procedure
for generating BPMN models from natural language text [34, 33]. The motivation behind
this work is to address the problem of as-is models acquisition, which consumes up to 60%
of the time spent on process management projects. The use of an automatic procedure for

1RDF is an XML-based specification developed by the World Wide Web Consortium (W3C). More
information avaiable at http://www.w3.org/RDF

2In essence, SPARQL is similar to SQL (Structured Query Language), the most popular language to
query data from relational databases), but is specifically designed to query RDF data.

http://www.w3.org/RDF

CHAPTER 5. RELATED WORKS 115

generating business process models can take advantage of the extensive documentations
often found within the companies, but are not in a ready-to-use format. The authors com-
bine exiting tools from natural language processing and augment them with an anaphora
resolution mechanism. The evaluation of the technique involves a test set of 47 text-model
pairs from industry and textbooks, showing that they are able to generate on average 77%
of the models correctly. The differences between their work and this thesis is that they
generate a conceptual model (i.e., process model) from natural language text and do not
offer the possibility to navigate into the opposite direction. In other words, it is not pos-
sible to generate natural language texts from the models. It also has another drawback
which is not begin language-independent and supporting only texts written in English.
Furthermore, as far it is described, it is also not possible to extend or adapt the technique
to fit specific needs. For example, to offer support to texts that follow specific patterns
that were not defined beforehand.

While studying about these related works, it was reasoned about reusing some of the
proposed approaches or even to combine them to help reach our objective. Nevertheless,
we decided to focus on developing our own solution. The main reason for this was the lack
of technical information (e.g., API documentation, source code availability and architec-
ture). Also, by developing our own code, we were capable of using our data structures for
both: generate NLG texts from BPMN models and BPMN models from texts. By doing
so, we manage to improve performance by updating only the model fragments which had
changes. Finally, another reason that based this decision was our language core, which
make our approach flexible enough to support multiple languages.

5.4Comparison

The previous sections described several related works that are within this dissertation
research area. More specifically, works which are within the context of process models.
Each paper has its own unique contribution along with several advantages and disadvan-
tages. This section aims at identifying such characteristics followed by a comparison with
this dissertation.

• Leopold et al., Supporting process model validation through natural language
generation [63]

– Objective: Generate natural language texts from BPMN process models.

– Advantages: Evaluations composed by several process models from both,

CHAPTER 5. RELATED WORKS 116

academy and industry.

– Disadvantages: Is capable of parsing only BPMN models written in English,
it cannot generate models from texts and the software architecture is void.

• Goncalves et al., A case study on designing business processes based on collab-
orative and mining approaches [24].

– Objective: Generate conceptual models from natural language texts.

– Advantages: It is capable of parsing story like texts and can parse Portuguese
texts.

– Advantages: It does not offer support for any other language, it parses only
story like texts and the evaluation is simple.

• Ghose et al., Process discovery from model and text artefacts, Rapid business
process discovery [39, 40].

– Objective: Generate process models from natural language texts.

– Advantages: It can generate UML compliant models.

– Disadvantages: It parses only English texts, the models are partially gener-
ated (i.e., requires manual competition) and the input text must be structured
according to its guideline.

• Tao et al., Automatically deriving a UML analysis model from a use case model
[143].

– Objective: Generate models from natural language texts.

– Advantages: It is capable of generating UML sequence diagrams.

– Disadvantages: It has a very strict output (only 26 output sentences may be
used) and must follow the RUCM format.

• Kop and Mayr, Tool supported extraction of behaviour models [53].

– Objective: Generate models from natural language texts.

– Advantages: It is capable of generating both, UML sequence and activity
diagrams. It defines an intermediate conceptual model, which can be easily
used in other approaches.

– Disadvantages: It supports onlyGermanwritten texts and is semi automatized
(requires a modeler to finish the partial generated model).

CHAPTER 5. RELATED WORKS 117

• Wang et al., Policy-driven processmapping (PDPM): Discovering processmod-
els from business policies [135].

– Objective: Generates process model from natural language text.

– Advantages: The process description does not need to be written in a sequen-
tial order.

– Disadvantages: Only a small sub set of the core BPMN elements is supported
and it is semi automatized (requires a modeler to finish the partial generated
model).

• Sinha et al., Use cases to process specifications in business process modeling
notation [117].

– Objective: Generate BPMN model from structured use cases.

– Advantages: The paper describes the approach with details and the authors
make use of several optimization techniques.

– Disadvantages: The paper does not present any process model that was used
by the authors.

• Friedrich et al., Process model generation from natural language text. [34]

– Objective: Generate model from natural language text.

– Advantages: Development of an anaphora resolution component, which can
be reused in other approaches. The evaluation count with more than 45 models
from both, academy and industry, and is described in details.

– Disadvantages: It is capable of parsing only English texts and does not sup-
port multiple text patterns that were not defined beforehand.

After identifying each paper advantage and disadvantage, we defined a set of criteria
to enable a comparison between these papers and this thesis. The rationale behind each
criteria is described below. Table 5.1 presents the comparison based on the defined criteria.

1. Model Generation: This criteria reflects whether the defined approach is capable
of generating model from natural language texts.

2. Text Generation: This criteria reflects whether the defined approach is capable of
generating text from process models. There are several companies which expend
time and considerable resources in translating process models to process textual
descriptions.

CHAPTER 5. RELATED WORKS 118

3. Multiple Languages: This criteria reflects whether the defined approach is capable
of supporting multiple languages. Although English is the predominant business
language, several companies typically model their processes in native language,
partially driven by legal requirements [61]. Thus, language independence can be
considered as an important feature to be found in language processing approaches.

4. Architecture: This criteria reflects whether the defined approach details its soft-
ware architecture, making it possible to be easily extended or reused by futureworks.
Source code availability is also considered within this criteria.

5. Automatized: This criteria reflects whether the defined approach is automatized or
not. This can be considered as an important feature because it can significantly re-
duce modeling time and save employees from manually translating existent models
to textual descriptions.

Table 5.1: Papers’ Comparison

Paper
Model
Generation

Text
Generation

Multiple
Languages

Architecture Automatized

Leopold et al. [63] - YES - YES YES
Goncalves et al. [24] YES YES - - YES
Ghose et al. [39, 40] - - - - -

Kop and Mayr [53] YES - - - -

Tao et al. [143] YES - - - YES
Wang et al. [135] YES - - - -

Sinha et al. [117] - - - - YES
Friedrich et al. [34] YES - - YES YES
This thesis YES YES YES YES YES

5.5Use of NLP techniques in other contexts

It was also inspected related work where NLP was used to achieve other BPM relevant
goals or areas where the creation of process models was not the focus. The below para-
graphs presents six streams of research that provided initial insights for the construction
of the NLP pipeline architecture 3.3.

Research on the automatic matching of WebServices to user queries written in natu-
ral language [6, 18] Bosca et al and Cremene el al propose frameworks for the analysis

CHAPTER 5. RELATED WORKS 119

of user queries in natural language based on a domain ontology to determine an appropri-
ate service composition. The services which were composed that way can then directly
be parameterized with the information provided by the user to answer a query. The sys-
tems were used to answer question regarding entertainment, e.g. “Which cinemas play the
movie x”, or to control devices which support the UPnP protocol.

Identification of process model relevant sections in accompanying documentation
[47] Ingvaldsen et al described a methodology which can be used to automatically deter-
mine links from an existing process model to the corresponding passages within a textual
description [47]. Because both, the model and the text, are already assumed to be present,
it becomes a matching problem, which is solved by applying a vector model to the text
and the labels, respectively. As our approach uses the textual information to create the
process model, such links can automatically be included. This enables the user to quickly
gather additional information or verify the generated model.

Mining of process models from event logs [130] Process Mining is another approach
for the automatic generation of process models [130]. But instead of text, it uses event
logs (e.g., from an ERP system) and then applies algorithms to construct a process model
which is able to explain the logical and temporal relations between the events found in the
log.

Generation of process models from text without linguistic analysis [70] A different
approach to the generation of business processes in the EPC notation from use case tem-
plates is presented by Lubke [69]. A strict tabular form of use-cases where the action,
trigger, pre and postconditions are clearly defined is required. By applying string match-
ing to the pre and postconditions, a process model is created. The approach was tested with
a single use-case describing a student enrolment process. Additionally, the approach was
transferred to BPMN, but the requirement of a fully structured use-case template remain
[70].

Usage of NLP techniques to provide machine-assistance during the modeling process
[68] The Stanford Parser was used to analyze existing process models [68]. The results
of this analysis is a Descriptor Space which contains information about entity life-cycles
and activity hierarchies. This information can then be utilized to assist a modeler when
creating a new model. Succeeding activities can be proposed based on the life-cycle of
the used business objects in the analyzed model repository.

CHAPTER 5. RELATED WORKS 120

Works on the automated generation of data models, e.g. in UML, from text [67]
The idea to automatically generate conceptual models from natural language input was
pursued ten years ago already. Examples are the CM-Builder system, GOOAL and LIDA,
which create UML class diagrams out of a software requirement text [44, 93, 90]. They
analyze textual input using a POS tagger and create classes out of the identified noun
phrases. Additionally, relations between the classes are created out of the S-V-O structure
of a sentence. The mentioned approaches were compared and the limited set of supported
UML modeling constructs was mentioned as the major limitation in a study conducted at
the Heriot-Watt University, Edinburgh [67].

Although not exactly related to this research goal, we considered these six lines of re-
search during the framework’s construction as it provided valuable insights into the issues
and considerations which are relevant for the automatic transformation of natural language
input.

6. Conclusion

Many companies maintain both process models and textual work instructions to de-
pict its business processes [129]. The use of both knowledge representations is needed
to address specific audience. While domain experts are usually not qualified for read-
ing process models, having to rely on textual descriptions, modeling experts prefer using
the model representation. Hence companies face redundant effort for manually updating
both process knowledge representation artifacts. This is prone to several inconsistencies
problems, as usually only one of the artifacts is modified or updated.

In this thesis, we proposed a round-trip technique capable of automatically generat-
ing natural language text from process models and updating these models from editions
on the text-based representation. By using this technique, it becomes possible to solve
the mentioned inconsistency problem, leverage saving potentials, increase the efficiency
of business analysts and to enable a quicker realization of BPM-projects and their bene-
fits. The technique also enables domain experts to edit formal process models without the
efforts of learning a modeling language.

The round-trip technique, combined existing tools from graph decomposition, natural
language processing and generation in an innovative way. From a research perspective,
the proposed technique provides the foundations for integrating textual and model-based
information. The technique’s capabilities were demonstrated through a prototype (i.e.,
language-independent framework), implemented using the Java programming language.
Throughout our analysis we highlighted the important issues for the construction of a
framework capable of both, processing textual process descriptions and models. With this
framework it is possible to maintain both business process representations (models and
textual descriptions) automatically synchronized.

The technique was evaluated through three different perspectives. First, one proof
of concept was design and executed by the authors with a small set of business process

121

CHAPTER 6. CONCLUSION 122

models to evaluate the overall framework’s behavior. Afterwards, some research ques-
tions were defined to serve as a guide during the execution of a case study, which aimed
at validating and evaluating the natural language text produced as the framework output
when given a process model instance as input. Finally, an experiment was run to evalu-
ate the synchronization components through editions made to the original text and asking
business process experts to evaluate whether the changes were reflected properly to the
original process model. Several conclusions can be drown from the evaluation:

1. The textual work instructions can be considered equivalent to the process models
in terms of knowledge representation within an acceptable threshold: 74% of the
subjects claim the equivalence between both knowledge representations vary from
68% to 100%.

2. Our evaluation indicates the chosen textual format is good: 86% of the subjects
claim the textual descriptions vary from excellent to good.

3. The knowledge represented by the manually updated text can be considered equiva-
lent to the automatically updated process model after the synchronization within an
acceptable threshold: 78% of the subjects claim the knowledge represented by the
manually updated text is equivalent to the automatically updated process model.

4. The NLG and NLP pipeline process (Figure 2.10 and 3.12, respectively) were fol-
lowed without the detection of any error that could compromise the execution of the
process.

5. The framework is capable of both: (i) Correctly generating natural language texts
from business process models used as input; and, (ii) Generating process models
from natural language texts.

6. The framework was able to map and treat all the BPMN elements defined in our
subset (Figure 2.3), as well as their respective notations and labels used to their
description. Therefore, we are confident that the required elements for the majority
of BPM projects can be provided by our transformation procedure as it covers the
most important and widely used elements [87].

From a practical perspective, our technique helps organization to simplify the pro-
cess of model creation and simultaneously the effort required by a business analyst can
be significantly reduced. To the best of our knowledge, we are the first to propose a
language-independent framework that implements a round-trip technique capable of gen-
erating natural language text from business process models and vice-versa. Due to its

CHAPTER 6. CONCLUSION 123

language independence, it can easily be adapted to a wide range of languages, belong-
ing to the Romanian and Germanic sub-branches of the Indo-European language family,
and is extensible to support multiple text formats. Hence, our evaluation results cannot
be automatically transferred to other language families, as for instance Asian languages.
However, our approach is designed as a language independent solution, which can be
theoretically applied to any language.

The framework’s architecture was designed to be extensible and to facilitate its usage
in scenarios that were not defined beforehand. Thus, new researches could take advantage
of the predefined modules and implement the interfaces to treat new scenarios or to help
addressing other research questions.

6.1Limitations

Despite these encouraging results, our framework is able to read process descriptions
consisting of full sentences. Furthermore, we assumed the description to be sequential and
to contain no questions and little process irrelevant information. Another prerequisite is
that the text is grammatically correct and constituent. Thus, the parsing of structured input,
like tables or texts which are of low quality is not possible at the moment and presents
opportunities for further research.

Word Sense Disambiguation and Named Entity Recognition was not within this thesis
scope, since the main goal was to execute a round-trip using a structured text to generate
process models [140]. By using structured text, we were able to define a text template. If
the text does not matches the template, then it is rejected by the framework. This impose
several limitations regarding the input text format and can be tackled by future researches.

Another issue is that our test data set comprising 30 text-model is relatively small.
Therefore, our test results are not fully generalizable.

Regarding the process model notation coverage, our scope was the BPMN notation.
Thus, no other notation is covered by our approach. Nevertheless, our architecture is
flexible to allow the translation of a Process Model object to any chosen notation, by
implementing specific interfaces. Another aspect to be taken into consideration is that
the models must be compliant to the main process modeling and labeling style guidelines,
otherwise the parsing component will not be able to handle the model correctly [80, 79,
61].

In a practical perspective, a problem that arises is the technique usage by companies

CHAPTER 6. CONCLUSION 124

that have all processes documented only through textual descriptions and wish to auto-
matically generate process models from these documents. Depending on the text pattern,
these companies will have to implement its own parser, making use of the available in-
terfaces or will have to extend the current template to support the desired structure, thus
requiring to rewrite the text representation to fits the current framework implementation.
Another drawback is the need to enhance the process model drawing algorithm. Currently,
the framework is capable of updating a JSON process model but it is not possible to create
the whole structure from zero. As mentioned in Section 2.2.1, a process model can be seen
as a graph structure. Thus, drawing process models involves graph theory which was not
within this thesis’s scope.

On the other hand, companies that have processes documented through process mod-
els and wish to generate textual descriptions can make usage of the described technique
without requiring any change. The descriptions can be automatically generated and the
models will be updated according to text-based changes. Thus, the more direct focus is
on companies who use process models as its primary process documentation format.

6.2Further Research

Different lines of research could be pursued in order to enhance the quality or scope
of our round-trip technique. For example, it should be possible for the user to specify or
override the text pattern for specific parts of the generated text without the need to develop
new interface implementations. Due to the framework’s architecture, this new feature
could be implemented by making use of special labels (i.e., markers) in the intermediate
structures to specify which text format should be used for mapping specific process model
elements.

A possible future work is to complement the framework with a domain expert. Hence,
missing information could then be requested from the user in an interactive fashion and
further relive the business analyst from interviewing tasks. Nevertheless, this would need
the usage of semantic analysis and reasoning capabilities. The possibility to analyze and
process larger amounts of textual information and extending the generation capabilities to
include organization charts and datamodels, is also a important stream of future research in
a practical context. Methods from the area of text mining and information retrieval would
then be necessary to identify important fragments and to perform a thematic clustering of
the acquired information [56].

We also suggest adding new languages to the tool. For this, it is necessary to imple-

CHAPTER 6. CONCLUSION 125

ment the operations present in the specific interfaces for the treatment of a new language,
defined in the package GeneralLanguageCommon (3.2). A language suitable for this
test would be the German or Spanish.

Another improvement to be developed is the expansion of elements covered from the
BPMN notation. Currently the subset we defined, presented in Figure 2.3, covers the core
BPMN elements (15 elements). Even though zur Muehlen states that only few BPMN di-
agrams use more than 15 different elements, we believe that this set should be extended to
support all BPMN symbols, thus improving the framework process model coverage [87].

Finally, the process model drawing algorithms need to be enhanced to support creat-
ing whole process models from zero. This could be achieved by applying graph theory
techniques to draw the model elements (nodes) and the connecting objects (e.g., sequence
flow) [138].

Bibliography

[1] Camille Ben Achour. Guiding scenario authoring1. Information Modelling and
Knowledge Bases X, 51:152, 1999.

[2] Susana Afonso, Eckhard Bick, Renato Haber, and Diana Santos. Floresta sintá (c)
tica: A treebank for portuguese. In LREC, 2002.

[3] Thomas Baier and Jan Mendling. Bridging abstraction layers in process mining
by automated matching of events and activities. In Business Process Management,
pages 17–32. Springer, 2013.

[4] Wasana Bandara, Guy G Gable, and Michael Rosemann. Factors and measures of
business process modelling: model building through a multiple case study. Euro-
pean Journal of Information Systems, 14(4):347–360, 2005.

[5] Jörg Becker, Michael Rosemann, and Christoph von Uthmann. Guidelines of busi-
ness process modeling. In Business Process Management, pages 30–49. Springer,
2000.

[6] Alessio Bosca, Fulvio Corno, Giuseppe Valetto, and Roberta Maglione. On-the-fly
construction of web services compositions from natural language requests. Journal
of Software, 1(1):40–50, 2006.

[7] Ian Brace. Questionnaire design. Kogan Page London, 2004.

[8] Ronald Brachman and Hector Levesque. Knowledge representation and reasoning.
Elsevier, 2004.

[9] Norman M Bradburn, Seymour Sudman, and Brian Wansink. Asking questions:
the definitive guide to questionnaire design–for market research, political polls,
and social and health questionnaires. John Wiley & Sons, 2004.

126

BIBLIOGRAPHY 127

[10] Michael Busch. Using likert scales in l2 research a researcher comments…. TESOL
Quarterly, 27(4):733–736, 1993.

[11] Stephan Busemann. Best First Surface Realization. DFKI, 1996.

[12] Stuart K Card, Jock D Mackinlay, and Ben Shneiderman. Readings in information
visualization: using vision to think. Morgan Kaufmann, 1999.

[13] Evellin Cristine Souza Cardoso, João Paulo A Almeida, and Giancarlo Guizzardi.
Requirements engineering based on business process models: A case study. In
Enterprise Distributed Object Computing Conference Workshops, 2009. EDOCW
2009. 13th, pages 320–327. IEEE, 2009.

[14] Russell Carney and Joel Levin. Pictorial illustrations still improve students’ learn-
ing from text. Educational psychology review, 14(1):5–26, 2002.

[15] Lucia Castro, Fernanda Baião, and Giancarlo Guizzardi. A semantic oriented
method for conceptual data modeling in ontouml based on linguistic concepts. In
Conceptual Modeling–ER 2011, pages 486–494. Springer, 2011.

[16] Suranjan Chakraborty, Saonee Sarker, and Suprateek Sarker. An exploration into
the process of requirements elicitation: A grounded approach. Journal of the As-
sociation for Information Systems, 11(4):1, 2010.

[17] Michele Chinosi and Alberto Trombetta. Bpmn: An introduction to the standard.
Computer Standards & Interfaces, 34(1):124–134, 2012.

[18] Marcel Cremene, Jean-Yves Tigli, Stéphane Lavirotte, Florin-Claudiu Pop, Michel
Riveill, and Gaëtan Rey. Service composition based on natural language requests.
In Services Computing, 2009. SCC’09. IEEE International Conference on, pages
486–489. IEEE, 2009.

[19] Bill Curtis, Sylvia B Sheppard, Elizabeth Kruesi-Bailey, John Bailey, and Debo-
rah A Boehm-Davis. Experimental evaluation of software documentation formats.
Journal of Systems and Software, 9(2):167–207, 1989.

[20] Robert Dale and Ehud Reiter. Building natural language generation systems. Cam-
bridge University Press, 2000.

[21] Hercules Dalianis. Aggregation in natural language generation. Computational
Intelligence, 15(4):384–414, 1999.

BIBLIOGRAPHY 128

[22] Daniela Damian and James Chisan. An empirical study of the complex relation-
ships between requirements engineering processes and other processes that lead to
payoffs in productivity, quality, and risk management. Software Engineering, IEEE
Transactions on, 32(7):433–453, 2006.

[23] Goncalves de AR, Joao Carlos, Flávia Maria Santoro, and Fernanda Araujo Baião.
A case study on designing business processes based on collaborative and mining
approaches. In Computer Supported Cooperative Work in Design (CSCWD), 2010
14th International Conference on, pages 611–616. IEEE, 2010.

[24] Joao Carlos de AR Goncalves, Flavia Maria Santoro, and Fernanda Araujo Baiao.
Business process mining from group stories. In Computer Supported Coopera-
tive Work in Design, 2009. CSCWD 2009. 13th International Conference on, pages
161–166. IEEE, 2009.

[25] Paul F Dietz. Maintaining order in a linked list. In Proceedings of the fourteenth
annual ACM symposium on Theory of computing, pages 122–127. ACM, 1982.

[26] Robert MW Dixon. Deriving verbs in english. Language Sciences, 30(1):31–52,
2008.

[27] Robert Dale Ehud Reiter. Building applied natural language generation systems.
Natural Language Engineering 1, 1997.

[28] Shimon Even. Graph algorithms. Cambridge University Press, 2011.

[29] Kathrin Figl and Ralf Laue. Cognitive complexity in business process modeling.
In Advanced Information Systems Engineering, pages 452–466. Springer, 2011.

[30] Günther Fliedl, Christian Kop, and Heinrich C Mayr. From textual scenarios to a
conceptual schema. Data & Knowledge Engineering, 55(1):20–37, 2005.

[31] Günther Fliedl, Christian Kop, Heinrich C Mayr, Alexander Salbrechter, Jürgen
Vöhringer, Georg Weber, and Christian Winkler. Deriving static and dynamic con-
cepts from software requirements using sophisticated tagging. Data & Knowledge
Engineering, 61(3):433–448, 2007.

[32] Paul JM Frederiks and Th P Van der Weide. Information modeling: The process
and the required competencies of its participants. Data & Knowledge Engineering,
58(1):4–20, 2006.

[33] Fabian Friedrich. Automated generation of business process models from natural
language input. PhD thesis, Citeseer, 2010.

BIBLIOGRAPHY 129

[34] Fabian Friedrich, Jan Mendling, and Frank Puhlmann. Process model generation
from natural language text. In Advanced Information Systems Engineering, pages
482–496. Springer, 2011.

[35] Michel Galley, Eric Fosler-Lussier, and Alexandros Potamianos. Hybrid natu-
ral language generation for spoken dialogue systems. In INTERSPEECH, pages
1735–1738, 2001.

[36] Albert Gatt, Francois Portet, Ehud Reiter, Jim Hunter, Saad Mahamood, Wendy
Moncur, and Somayajulu Sripada. From data to text in the neonatal intensive care
unit: Using nlg technology for decision support and information management. Ai
Communications, 22(3):153–186, 2009.

[37] Niyu Ge, John Hale, and Eugene Charniak. A statistical approach to anaphora
resolution. In Proceedings of the sixth workshop on very large corpora, volume 71,
page 76, 1998.

[38] Andrew Gemino. Empirical comparisons of animation and narration in require-
ments validation. Requirements Engineering, 9(3):153–168, 2004.

[39] Aditya Ghose, George Koliadis, and Arthur Chueng. Process discovery frommodel
and text artefacts. In Services, 2007 IEEE Congress on, pages 167–174. IEEE,
2007.

[40] Aditya Ghose, George Koliadis, and Arthur Chueng. Rapid business process dis-
covery (r-bpd). In Conceptual Modeling-ER 2007, pages 391–406. Springer, 2007.

[41] Thomas RG Green, Marian Petre, and RKE Bellamy. Comprehensibility
of visual and textual programs: A test of superlativism against the’match-
mismatch’conjecture. ESP, 91(743):121–146, 1991.

[42] Volker Gruhn and Ralf Laue. What business process modelers can learn from pro-
grammers. Science of Computer Programming, 65(1):4–13, 2007.

[43] Cornelia Haisjackl and Stefan Zugal. Investigating differences between graphical
and textual declarative process models. In Advanced Information Systems Engi-
neering Workshops, pages 194–206. Springer, 2014.

[44] Harmain M Harmain and R Gaizauskas. Cm-builder: An automated nl-based case
tool. In Automated Software Engineering, 2000. Proceedings ASE 2000. The Fif-
teenth IEEE International Conference on, pages 45–53. IEEE, 2000.

BIBLIOGRAPHY 130

[45] AR Henver, Salvatore T March, Jinsoo Park, and Sudha Ram. Design science in
information systems research. MIS quarterly, 28(1):75–105, 2004.

[46] Jerry R Hobbs. Resolving pronoun references. Lingua, 44(4):311–338, 1978.

[47] Jon Espen Ingvaldsen, Jon Atle Gulla, Xiaomeng Su, and Harald Rønneberg. A text
mining approach to integrating business process models and governing documents.
In OTM Confederated International Conferences” On the Move to Meaningful In-
ternet Systems”, pages 473–484. Springer, 2005.

[48] Dan Jurafsky and James H Martin. Speech and language processing. Pearson,
2014.

[49] Rodger Kibble and Richard Power. An integrated framework for text planning and
pronominalisation. In Proceedings of the first international conference on Natu-
ral language generation-Volume 14, pages 77–84. Association for Computational
Linguistics, 2000.

[50] Ryan KL Ko, Stephen SG Lee, and Eng Wah Lee. Business process management
(bpm) standards: a survey. Business Process Management Journal, 15(5):744–791,
2009.

[51] Jens Kolb, Henrik Leopold, Jan Mendling, and Manfred Reichert. Creating and
updating personalized and verbalized business process descriptions. InThe Practice
of Enterprise Modeling, pages 191–205. Springer, 2013.

[52] Christian Kop and Heinrich C Mayr. Conceptual predesign bridging the gap be-
tween requirements and conceptual design. In Requirements Engineering, 1998.
Proceedings. 1998 Third International Conference on, pages 90–98. IEEE, 1998.

[53] Christian Kop, Jürgen Vöhringer, Martin Hölbling, Thomas Horn, Heinrich C
Mayr, and Christian Irrasch. Tool supported extraction of behavior models. In
ISTA, volume 63, pages 114–123, 2005.

[54] Joseph B Kruskal. overview of sequence comparison. Time warps, string edits, and
macromolecules: the theory and practice of sequence comparison/edited by David
Sankoff and Joseph B. Krustal, 1983.

[55] Palani Kumanan, Amit Paradkar, Avik Sinha, and Stanley M Sutton Jr. Automated
inspection of industrial use case models inferred from textual descriptions. 2010.

BIBLIOGRAPHY 131

[56] Sylvain Lamprier, Tassadit Amghar, Bernard Levrat, and Frederic Saubion. Us-
ing an evolving thematic clustering in a text segmentation process. J. UCS,
14(2):178–192, 2008.

[57] Jill H Larkin and Herbert A Simon. Why a diagram is (sometimes) worth ten thou-
sand words. Cognitive science, 11(1):65–100, 1987.

[58] Craig Larman. Applying uml and patterns: An introduction to object-oriented anal-
ysis and design and iterative development. 2005.

[59] Benoit Lavoie and Owen Rambow. A fast and portable realizer for text genera-
tion systems. In Proceedings of the fifth conference on Applied natural language
processing, pages 265–268. Association for Computational Linguistics, 1997.

[60] Benoit Lavoie, Owen Rambow, and Ehud Reiter. The modelexplainer. In Demon-
stration presented at the Eighth International Workshop on Natural Language Gen-
eration, Herstmonceux, Sussex, 1996.

[61] Henrik Leopold, Rami-Habib Eid-Sabbagh, Jan Mendling, Leonardo Guerreiro
Azevedo, and Fernanda Araujo Baião. Detection of naming convention violations
in process models for different languages. Decision Support Systems, 56:310–325,
2013.

[62] Henrik Leopold, Jan Mendling, and Artem Polyvyanyy. Generating natural lan-
guage texts from business process models. In Advanced Information Systems En-
gineering, pages 64–79. Springer, 2012.

[63] Henrik Leopold, Jan Mendling, and Artem Polyvyanyy. Supporting process model
validation through natural language generation. 2014.

[64] Henrik Leopold, Han van der Aa, Fabian Pittke, Manuel Raffel, Jan Mendling,
and Hajo A Reijers. Integrating textual and model-based process descriptions for
comprehensive process search. In International Workshop on Business Process
Modeling, Development and Support, pages 51–65. Springer, 2016.

[65] David D Lewis and Karen Spärck Jones. Natural language processing for informa-
tion retrieval. Communications of the ACM, 39(1):92–101, 1996.

[66] Jiexun Li, Harry Jiannan Wang, Zhu Zhang, and J Leon Zhao. A policy-based
process mining framework: mining business policy texts for discovering process
models. Information Systems and E-Business Management, 8(2):169–188, 2010.

BIBLIOGRAPHY 132

[67] Ke Li, RG Dewar, and RJ Pooley. Object-oriented analysis using natural language
processing. Linguistic Analysis, pages 75–76, 2005.

[68] Maya Lincoln, Mati Golani, and Avigdor Gal. Machine-assisted design of business
process models using descriptor space analysis. In International Conference on
Business Process Management, pages 128–144. Springer, 2010.

[69] Daniel Lübke. Transformation of use cases to epc models. In EPK, pages 137–156.
Citeseer, 2006.

[70] Daniel Lübke and Kurt Schneider. Visualizing use case sets as bpmn processes.
In Requirements Engineering Visualization, 2008. REV’08., pages 21–25. IEEE,
2008.

[71] Christopher D Manning, Prabhakar Raghavan, Hinrich Schütze, et al. Introduction
to information retrieval, volume 1. Cambridge university press Cambridge, 2008.

[72] Christopher D Manning and Hinrich Schütze. Foundations of statistical natural
language processing. MIT press, 1999.

[73] James H Martin and D Jurafsky. Speech and language processing, 2000.

[74] IgorAMel’čuk andAlain Polguere. A formal lexicon in themeaning-text theory:(or
how to do lexica with words). Computational linguistics, 13(3-4):261–275, 1987.

[75] Jan Mendling. Metrics for process models: empirical foundations of verification,
error prediction, and guidelines for correctness, volume 6. Springer Science &
Business Media, 2008.

[76] Jan Mendling. Empirical studies in process model verification. In Transactions on
petri nets and other models of concurrency II, pages 208–224. Springer, 2009.

[77] Jan Mendling, Michael Moser, Gustaf Neumann, HMWVerbeek, Boudewijn F van
Dongen, and Wil MP van der Aalst. Faulty EPCs in the SAP reference model.
Springer, 2006.

[78] Jan Mendling, Hajo A Reijers, and Jorge Cardoso. What makes process models
understandable? In Business Process Management, pages 48–63. Springer, 2007.

[79] Jan Mendling, Hajo A Reijers, and Jan Recker. Activity labeling in pro-
cess modeling: Empirical insights and recommendations. Information Systems,
35(4):467–482, 2010.

BIBLIOGRAPHY 133

[80] Jan Mendling, Hajo A Reijers, and Wil MP van der Aalst. Seven process modeling
guidelines (7pmg). Information and Software Technology, 52(2):127–136, 2010.

[81] Jan Mendling, Mark Strembeck, and Jan Recker. Factors of process model com-
prehension findings from a series of experiments. Decision Support Systems,
53(1):195–206, 2012.

[82] Jan Mendling, Boudewijn F van Dongen, and Wil MP van der Aalst. Getting rid of
the or-join in business process models. In Enterprise Distributed Object Computing
Conference, 2007. EDOC 2007. 11th IEEE International, pages 3–3. IEEE, 2007.

[83] MarieMeteer. Expressibility and the problem of efficient text planning. Bloomsbury
Publishing, 2015.

[84] Farid Meziane, Nikos Athanasakis, and Sophia Ananiadou. Generating natu-
ral language specifications from uml class diagrams. Requirements Engineering,
13(1):1–18, 2008.

[85] Thomas G Moher, DC Mak, B Blumenthal, and LM Levanthal. Comparing the
comprehensibility of textual and graphical programs. In Empirical Studies of Pro-
grammers: Fifth Workshop, pages 137–161. Ablex, Norwood, NJ, 1993.

[86] Gerardus Maria Nijssen and Terence Aidan Halpin. Conceptual Schema and Rela-
tional Database Design: a fact oriented approach. Prentice-Hall, Inc., 1989.

[87] Anna Gunhild Nysetvold and John Krogstie. Assessing business process model-
ing languages using a generic quality framework. Advanced topics in database
research, 5:79–93, 2006.

[88] OMG. Business process model and notation (bpmn) version 2.0. http://www.
bpmn.org/, 2011.

[89] Avner Ottensooser, Alan Fekete, Hajo A Reijers, Jan Mendling, and Con Menictas.
Making sense of business process descriptions: An experimental comparison of
graphical and textual notations. Journal of Systems and Software, 85(3):596–606,
2012.

[90] Scott P Overmyer, Benoit Lavoie, and Owen Rambow. Conceptual modeling
through linguistic analysis using lida. In Proceedings of the 23rd international con-
ference on Software engineering, pages 401–410. IEEE Computer Society, 2001.

[91] Fred Paas, Alexander Renkl, and John Sweller. Cognitive load theory and instruc-
tional design: Recent developments. Educational psychologist, 38(1):1–4, 2003.

http://www.bpmn.org/
http://www.bpmn.org/

BIBLIOGRAPHY 134

[92] Bo Pang and Lillian Lee. Opinion mining and sentiment analysis. Foundations and
trends in information retrieval, 2(1-2):1–135, 2008.

[93] Hector G Perez-Gonzalez and Jugal K Kalita. Gooal: a graphic object oriented
analysis laboratory. InCompanion of the 17th annual ACMSIGPLAN conference on
Object-oriented programming, systems, languages, and applications, pages 38–39.
ACM, 2002.

[94] Massimo Poesio andMijail AlexandrovKabadjov. A general-purpose, off-the-shelf
anaphora resolutionmodule: Implementation and preliminary evaluation. In LREC,
2004.

[95] Artem Polyvyanyy, Jussi Vanhatalo, and Hagen Völzer. Simplified computation
and generalization of the refined process structure tree. InWeb Services and Formal
Methods, pages 25–41. Springer, 2011.

[96] Wolfgang Pree. Meta patterns a means for capturing the essentials of reusable
object-oriented design. InObject-oriented programming, pages 150–162. Springer,
1994.

[97] Anand Rajaraman, Jeffrey D Ullman, Jeffrey David Ullman, and Jeffrey David
Ullman. Mining of massive datasets, volume 77. Cambridge University Press
Cambridge, 2012.

[98] Leonardo Azevedo Raphael Rodrigues and Kate Revoredo. Sincronização au-
tomática dos artefatos de processos de negócio: Métodos e aplicações. In SBSI
2015 - WTDSI 2015, may 2015.

[99] Janice Rattray and Martyn C Jones. Essential elements of questionnaire design and
development. Journal of clinical nursing, 16(2):234–243, 2007.

[100] Raj Ratwani, Gregory Trafton, and Deborah Boehm-Davis. Thinking graphically:
Connecting vision and cognition during graph comprehension. Journal of Experi-
mental Psychology: Applied, 14(1):36, 2008.

[101] Jan Recker. Scientific research in information systems: a beginner’s guide.
Springer, 2012.

[102] HajoAReijers, Selma Limam, andWilMPVanDerAalst. Product-basedworkflow
design. Journal of Management Information Systems, 20(1):229–262, 2003.

BIBLIOGRAPHY 135

[103] Hajo A Reijers and Jan Mendling. A study into the factors that influence the un-
derstandability of business process models. Systems, Man and Cybernetics, Part
A: Systems and Humans, IEEE Transactions on, 41(3):449–462, 2011.

[104] Ehud Reiter. Nlg vs. templates. arXiv preprint cmp-lg/9504013, 1995.

[105] Ehud Reiter. An architecture for data-to-text systems. In Proceedings of the
Eleventh EuropeanWorkshop on Natural Language Generation, pages 97–104. As-
sociation for Computational Linguistics, 2007.

[106] Ehud Reiter and Chris Mellish. Optimizing the costs and benefits of natural lan-
guage generation. In IJCAI, pages 1164–1171, 1993.

[107] Ehud Reiter, Chris Mellish, and John Levine. Automatic generation of on-line doc-
umentation in the idas project. In Proceedings of the third conference on Applied
natural language processing, pages 64–71. Association for Computational Linguis-
tics, 1992.

[108] R. D. A. Rodrigues, M. D. O. Barros, K. Revoredo, L. G. Azevedo, and H. Leopold.
An experiment on process model understandability using textual work instructions
and bpmn models. In Software Engineering (SBES), 2015 29th Brazilian Sympo-
sium on, pages 41–50, Sept 2015.

[109] Raphael Rodrigues, Leonardo Azevedo, Kate Revoredo, and Henrik Leopold. Text
generation from business process models. In CBSoft 2014 - Industry Track, sep
2014.

[110] Raphael Rodrigues, Leonardo Azevedo, Kate Revoredo, and Henrik Leopold. A
tool to generate natural language text from business process models. In CBSoft
2014 - Tool Session, sep 2014.

[111] Michael Rosemann. Potential pitfalls of process modeling: part a. Business Process
Management Journal, 12(2):249–254, 2006.

[112] Alexander Salbrechter, Heinrich C Mayr, and Christian Kop. Mapping pre-
designed business process models to uml. In Software Engineering and Applica-
tions: Proceedings of the Eighth IASTED International Conference, 2004.

[113] August-Wilhelm Scheer and Markus Nüttgens. Aris architecture and reference
models for business process management. In Business Process Management, pages
376–389. Springer, 2000.

BIBLIOGRAPHY 136

[114] August-WilhelmScheer, Oliver Thomas, andOtmarAdam. Processmodeling using
event-driven process chains. Process-Aware Information Systems, pages 119–146,
2005.

[115] Ben Shneiderman, Richard Mayer, Don McKay, and Peter Heller. Experimental in-
vestigations of the utility of detailed flowcharts in programming. Communications
of the ACM, 20(6):373–381, 1977.

[116] Keng Siau. Informational and computational equivalence in comparing information
modeling methods. Journal of Database Management (JDM), 15(1):73–86, 2004.

[117] Avik Sinha and Amit Paradkar. Use cases to process specifications in business pro-
cess modeling notation. InWeb Services (ICWS), 2010 IEEE International Confer-
ence on, pages 473–480. IEEE, 2010.

[118] Avik Sinha, Amit Paradkar, Palani Kumanan, and Branimir Boguraev. An analysis
engine for dependable elicitation on natural language use case description and its
application to industrial use cases. IBM Report, 2008.

[119] Amie L Souter, Lori L Pollock, and Dixie Hisley. Inter-class def-use analysis
with partial class representations. ACM SIGSOFT Software Engineering Notes,
24(5):47–56, 1999.

[120] John F Sowa. Knowledge representation: logical, philosophical, and computational
foundations. 1999.

[121] Michael Steinbach, George Karypis, Vipin Kumar, et al. A comparison of docu-
ment clustering techniques. In KDD workshop on text mining, volume 400, pages
525–526. Boston, 2000.

[122] Veselin Stoyanov, Claire Cardie, Nathan Gilbert, Ellen Riloff, David Buttler, and
David Hysom. Reconcile: A coreference resolution research platform. 2010.

[123] Alexander Sturn, John Quackenbush, and Zlatko Trajanoski. Genesis: cluster anal-
ysis of microarray data. Bioinformatics, 18(1):207–208, 2002.

[124] Melanie Tory and Torsten Moller. Human factors in visualization research. Visu-
alization and Computer Graphics, 10(1):72–84, 2004.

[125] UML. Uml ad - activity diagrams. http://www.uml-diagrams.org/activity-
diagrams.html, 2014.

BIBLIOGRAPHY 137

[126] Kees Van Deemter, Emiel Krahmer, and Mariët Theune. Real versus template-
based natural language generation: A false opposition? Computational Linguistics,
31(1):15–24, 2005.

[127] Wil MP Van Der Aalst and Arthur HM Ter Hofstede. Yawl: yet another workflow
language. Information systems, 30(4):245–275, 2005.

[128] Wil MP van der Aalst, KeesM van Hee, Arthur HM ter Hofstede, Natalia Sidorova,
HMW Verbeek, Marc Voorhoeve, and Moe Thandar Wynn. Soundness of work-
flow nets: classification, decidability, and analysis. Formal Aspects of Computing,
23(3):333–363, 2011.

[129] TTGP van der Molen. Maintaining consistency between business process diagrams
and textual documentation using the epsilon model management platform. 2011.

[130] Boudewijn F Van Dongen, Ana Karla A de Medeiros, HMWVerbeek, AJMMWei-
jters, and Wil MP Van Der Aalst. The prom framework: A new era in process
mining tool support. In International Conference on Application and Theory of
Petri Nets, pages 444–454. Springer, 2005.

[131] Jussi Vanhatalo, Hagen Völzer, and Jana Koehler. The refined process structure
tree. Data & Knowledge Engineering, 68(9):793–818, 2009.

[132] GMA Verheijen and J Van Bekkum. Niam: an information analysis method. In-
formation Systems Design Methodologies: A Comparative Review, TW Olle, et
al.(eds.), pages 537–590, 1982.

[133] Yannick Versley, Simone Paolo Ponzetto, Massimo Poesio, Vladimir Eidelman,
Alan Jern, Jason Smith, XiaofengYang, andAlessandroMoschitti. Bart: Amodular
toolkit for coreference resolution. In Proceedings of the 46th Annual Meeting of
the Association for Computational Linguistics on Human Language Technologies:
Demo Session, pages 9–12. Association for Computational Linguistics, 2008.

[134] Jacques Wainer. Métodos de pesquisa quantitativa e qualitativa para a ciência da
computação. Atualização em informática, pages 221–262, 2007.

[135] Harry Jiannan Wang, J Leon Zhao, and Liang-Jie Zhang. Policy-driven process
mapping (pdpm): Discovering process models from business policies. Decision
Support Systems, 48(1):267–281, 2009.

[136] Barbara Weber, Manfred Reichert, and Stefanie Rinderle-Ma. Change patterns and
change support features–enhancing flexibility in process-aware information sys-
tems. Data & knowledge engineering, 66(3):438–466, 2008.

BIBLIOGRAPHY 138

[137] Mathias Weske. Business process management: concepts, languages, architec-
tures. Springer Publishing Company, Incorporated, 2010.

[138] Douglas Brent West et al. Introduction to graph theory, volume 2. Prentice hall
Upper Saddle River, 2001.

[139] William Winn. Contributions of perceptual and cognitive processes to the compre-
hension of graphics. Advances in psychology, 108:3–27, 1994.

[140] David Yarowsky, H Somers, R Dale, and H Moisl. Word-sense disambiguation.
Handbook of natural language processing, pages 629–654, 2000.

[141] Tao Yue, Lionel C Briand, and Yvan Labiche. A use case modeling approach to fa-
cilitate the transition towards analysis models: Concepts and empirical evaluation.
In International Conference onModel Driven Engineering Languages and Systems,
pages 484–498. Springer, 2009.

[142] Tao Yue, Lionel C Briand, and Yvan Labiche. An automated approach to transform
use cases into activity diagrams. InModelling Foundations and Applications, pages
337–353. Springer, 2010.

[143] Tao Yue, Lionel C Briand, and Yvan Labiche. Automatically deriving a UML anal-
ysis model from a use case model. Citeseer, 2011.

[144] Stefan Zugal, Jakob Pinggera, and Barbara Weber. Assessing process models with
cognitive psychology. In EMISA, volume 190, pages 177–182, 2011.

A. Appendix - Algorithms

139

APPENDIX A. APPENDIX - ALGORITHMS 140

Algorithm 1 identifySentenceType algorithm, from PortugueseLanguageProcessor im-
plementation
1: procedure identifySentenceType(plainSentence)
2: elementType← ProcessElementType.UNKNOW
3: if (plainSentence ̸= ∅ and plainSentence.trim().isNotEmpty()) then ◃

Input validation
4: if extractActivityFrom(plainSentence) ̸= ∅ then
5: elementType← ProcessElementType.ACTIVITY
6: else
7: eventProperties← extractEventFrom(plainSentence)
8: if eventProperties ̸= ∅ then
9: elementType← eventProperties.getElementType()
10: else
11: gatewayProperties← extractGatewayFrom(plainSentence)
12: if gatewayProperties ̸= ∅ then
13: elementType← gatewayProperties.getElementType()
14: else
15: splittedSentence← plainSentence.split(“\s+”)
16: for word splittedSentence do
17: if ignoredWords.contains(word) then
18: throw newException(“The sentence ’plainSentence’ could

not be mapped because the ’word’ syntactic function was not present in the current
language corpus.”)

19: else
20: isSentenceRelevant ←

sentenceRelevanceAnalysis(plainSentence)
21: if isSentenceRelevant = false then
22: elementType← ProcessElementType.NOT_RELEVANT
23: else
24: elementType← ProcessElementType.UNKNOW

25: return elementType

APPENDIX A. APPENDIX - ALGORITHMS 141

Algorithm 2 extractActivityProperties algorithm, from PortugueseLanguageProcessor
implementation
1: procedure extractActivityProperties(plainSentence)
2: activityProperties← ∅
3: i← 0

4: splittedSentence← plainSentence.split(“\s+”)
5: isFirstWordNoun← labelHelper.isNoun(splittedSentence[i++])
6: compositeNoun← splittedSentence[i-1]
7: if isFirstWordNoun then
8: for ; i < splittedSentence.length ; i+=2 do
9: isPreposition← labelHelper.isPreposition(splittedSentence[i])
10: isNoun← labelHelper.isNoun(splittedSentence[i+1])
11: if isPreposition and isNoun then
12: compositeNoun ← compositeNoun + “ ” +

splittedSentence[i] + “ ” + splittedSentence[i+1]
13: else
14: break for
15:

16: action← splittedSentence[i++]
17: businessObject← splittedSentence[i]
18: isSecondWordVerb← labelHelper.isVerb(action)
19: isThirdWordNoun← labelHelper.isNoun(businessObject)
20: if isFirstWordNoun and isSecondWordVerb and isThirdWordNoun then
21: if labelHelper.isInfinitive(action) = false then
22: action← labelHelper.getInfinitiveOfAction(action)

23: indexBeginAddition ← plainSentence.indexOf(businessObject) +
businessObject.length()

24: if indexBeginAddition < plainSentence.length() then
25: addition← plainSentence.substring(indexBeginAddition + 1)
26: else
27: addition← “”
28: activityProperties ← new ProcessActivityProperty(businessObject,

compositeNoun, action, addition)

29: return activityProperties

APPENDIX A. APPENDIX - ALGORITHMS 142

Algorithm 3 extractEventProperties algorithm, from PortugueseLanguageProcessor im-
plementation
1: procedure extractEventProperties(plainSentence)
2: eventProperties← ∅
3: cleanedPlainSentence← textFormatter.removeStopWords(plainSentence)
4: lowerCaseSentence← cleanedPlainSentence.toLowerCase()
5: eventProperties← extractBeginEvent(lowerCaseSentence)
6: if eventProperties = ∅ then
7: eventProperties← extractEndEvent(lowerCaseSentence)

8: return eventProperties

Algorithm 4 extractGatewayProperties algorithm
1: procedure extractGatewayProperties(plainSentence)
2: gatewayProperties← ∅
3: return gatewayProperties

Algorithm 5 processTextDiff algorithm
1: procedure processTextDiff(originalText, currentText)
2: differences← new List<SentenceDiff>()
3: originalTextWithoutWhiteSpaces← originalText.removeAll(“\s+”)
4: currentTextTextWithoutWhiteSpaces← currentText.removeAll(“\s+”)
5: if originalTextWithoutWhiteSpaces.notEqualsIgnoreCase(currentTextWithoutWhiteSpaces)

then
6: originalSentences← originalTextWithoutWhiteSpaces.split(“\.”)
7: currentSentences← currentTextWithoutWhiteSpaces.split(“\.”)
8: removedSentences ← processRemovals(originalSentences,

currentSentences)
9: insertedSentences ← processInserts(originalSentences,

currentSentences)
10: differences.addAll(removedSentences)
11: differences.addAll(insertedSentences)

12: return differences

APPENDIX A. APPENDIX - ALGORITHMS 143

Algorithm 6 processRemovals algorithm
1: procedure processRemovals(original, current)
2: diffs← new List<SentenceDiff>()
3: for index← 0; index < original.size(); index++ do
4: originalSentence← original.get(index)
5: if current.notContains(originalSentence) then ◃ Verify if the old

sentence exists within the new text
6: diff ← new SentenceDiff(originalSentence, index,

SentenceOperationType.DELETE)
7: diffs.add(diff) ◃ If the sentence does not exists, then it was removed

8: return diffs

APPENDIX A. APPENDIX - ALGORITHMS 144

Algorithm 7 processSentencesRecursivly algorithm, from SurfaceRealizer class
1: procedure processSentencesRecursivly(List<DSynTSentence> sentencePlan, Re-

alizedText currentMainBranch, intmainBranchSenLevel)
2: surfaceText← “”
3: while currentDsyntSentence < sentencePlan.size() do
4: dsyntSentence← sentencePlan.get(currentDsyntSentence)
5: eFrag← dsyntSentence.getExecutableFragment()
6: mainBranchSenLevel← eFrag.sen_level
7: if lastLevel >mainBranchSenLevel then ◃ checks if the secondary

branch has finished
8: currentMainBranch← currentMainBranch.getFatherBranch() ◃

it means that all secondary paths (branches) are finished, then we must go back to the
main branch

9: if (mainBranchSenLevel > lastLevel or lastBulletNumber <
eFrag.sen_bulletNumber) then

10: if eFrag.sen_bulletNumber > 1 then ◃ if bullet number > 1, then we
must return to the previous mainBranch

11: currentMainBranch← currentMainBranch.getFatherBranch()

12: lastBulletNumber← eFrag.sen_bulletNumber
13: newCurrentMainBranch ← new RealizedText(lHelper,

languageProcessor)
14: currentMainBranch.addBranchSentences(newCurrentMainBranch)
15: newCurrentMainBranch.setFatherBranch(currentMainBranch)
16: if currentDsyntSentence < sentencePlan.size()-1 then
17: lastLevel← mainBranchSenLevel

18: surfaceText ← surfaceText +
processSentencesRecursivly(sentencePlan, newCurrentMainBranch,
mainBranchSenLevel)

19: else
20: textSentence ← realizeSentence(dsyntSentence,

mainBranchSenLevel, lastLevel)
21: surfaceText← surfaceText + “ ” + textSentence

22: currentMainBranch.addSentence(textSentence, dsyntSentence)
23: currentDsyntSentence++
24: lastLevel← mainBranchSenLevel

25: return surfaceText

APPENDIX A. APPENDIX - ALGORITHMS 145

Algorithm 8 processInserts algorithm
1: procedure processInserts(original, current)
2: diffs← new List<SentenceDiff>()
3: for index← 0; index < current.size(); index++ do
4: currentSentence← current.get(index)
5: if original.notContains(currentSentence) then ◃ Verify if the new

sentence exists within the old text
6: diff ← new SentenceDiff(currentSentence, index,

SentenceOperationType.INSERT)
7: diffs.add(diff) ◃ If the sentence does not exists, then it was inserted

8: return diffs

APPENDIX A. APPENDIX - ALGORITHMS 146

Algorithm 9 removeStopWords algorithm, from ILabelHelper interface specification
1: procedure removeStopWords(String cleanText)
2: if (cleanText ̸= ∅ and cleanText.trim().isNotEmpty()) then ◃ Input

validation
3: discourseMarkers← Localization.getInstance().getDiscourseMarkers()
4: formarker є discourseMarkers do
5: if (cleanText.toLowerCase().contains(marker) then
6: cleanText← cleanText.removeAll(“(?i)” +marker) ◃ Use of

Regular expression for removing the marker from the string

7: words← cleanText.split(“\s+”) ◃ Tokenization regex
8: for word є words do
9: word← word.removeAll(“.”) ◃ remove attached periods (e.g., .entao.

-> entao)
10: word← word.removeAll(“,”) ◃ remove attached commas (e.g., ,entao,

-> entao)
11: if discourseMarkers.contains(word.toLowerCase()) then
12: regex← “(?i) + \s* + word + \s*” ◃ where \s* = Regex which

represents 0 or more white space characters (e.g., “ ”)
13: cleanText← cleanText.removeAll(regex) ◃ removes all the

strings which match with the regex
14: else if StopWordManager.getInstance().isStopWord(word) then
15: regex← “(?i) + \s+ + word + \s+” ◃ where \s+ = Regex which

represents 1 or more white space characters (e.g., “ ”)
16: cleanText← cleanText.removeAll(regex)

17: cleanText← cleanText.trim().replaceAll(“\s+”, “ ”) ◃ remove trailing
and excessive white spaces

18: cleanText← cleanTextFromEmptyComas(cleanText) ◃ remove empty
comas

19: return cleanText

APPENDIX A. APPENDIX - ALGORITHMS 147

Algorithm 10 checkForConjunction algorithm (for Portuguese)
1: procedure checkForConjunction(Label label, ILabelProperties props)
2: splitLabel← label.split(” ”)
3: if label.contains(“e”) then
4: props.setIndexConjunction(label.indexOf(“e”)
5: props.setHasConjunction(true)
6: for word є splitLabel.words do
7: if word = “e” then
8: props.setIndexConjunction(word)
9: break for
10: if (label.contains(“/”) and label.indexOf(“/”) < props.getIndexPrep) then
11: props.setIndexConjunction(label.indexOf(“/”))
12: props.setHasConjunction(true)
13: for word є splitlabel.words do
14: if word = “/” then
15: props.setIndexConjunction(word)
16: break for;

17: if label.contains(“,”) then
18: props.setIndexConjunction(label.indexOf(“,”))
19: props.setHasConjunction(true)
20: for word є splitlabel.words do
21: if word.contains(“,”) then
22: props.setIndexConjunction(word);
23: break for

Algorithm 11 removeArticleFromBo algorithm (for Portuguese) from PortugueseLabel-
Helper implementation
1: procedure removeArticleFromBo(String bo)
2: splittedBo← bo.split(“ ”)
3: if (splittedBo.length > 1 and isArticle(splittedBo.words[0])) then
4: bo← bo.substring(splittedbo.words[0].length)

5: return bo

APPENDIX A. APPENDIX - ALGORITHMS 148

Algorithm 12 getPrepositions algorithm (for Portuguese) from PortugueseLabelHelper
implementation
1: procedure getPrepositions
2: if prepositions = null then
3: prepositions ← (LanguageData.noArticlePrepositions U

LanguageData.articlePrepositions)

4: return prepositions

Algorithm 13 getPrepositions algorithm (for English)
1: procedure getPrepositions
2: if prepositions = null then
3: prepositions ← “within”, “into”, “upon”, “until”, “on”, “of ”, “for”, “by”,

“from”, “to”, “at”, “with”, “w/o”, “without”, “in”, “that”, “using”, “via”, “during”

4: return prepositions

Algorithm 14 isAdverb algorithm (for Portuguese) from PortugueseLabelHelper imple-
mentation
1: procedure isAdverb(String word)
2: isAdverb← false
3: if getPos(word) = PortugueseLabelHelper.POS_ADV then
4: isAdverb← true
5: return isAdverb

APPENDIX A. APPENDIX - ALGORITHMS 149

Algorithm 15 isVerb algorithm (for Portuguese) from PortugueseLabelHelper implemen-
tation
1: procedure isVerb(String word)
2: isVerb← false
3: if getPos(word) = PortugueseLabelHelper.POS_VERB then
4: isVerb← true
5: return isVerb

Algorithm16 isNoun algorithm (for Portuguese) fromPortugueseLabelHelper implemen-
tation
1: procedure isNoun(String word)
2: isNoun← false
3: if getPos(word) = PortugueseLabelHelper.POS_NOUN then
4: isNoun← true
5: return isNoun

Algorithm 17 isAdjective algorithm (for Portuguese) from PortugueseLabelHelper im-
plementation
1: procedure isNoun(String word)
2: isAdjective← false
3: if getPos(word) = PortugueseLabelHelper.POS_ADJ then
4: isAdjective← true

5: return isAdjective

APPENDIX A. APPENDIX - ALGORITHMS 150

Algorithm 18 getInfinitive algorithm (for Portuguese) from PortugueseLabelHelper im-
plementation
1: procedure getInfinitive(String conjugatedVerb)
2: infinitiveForm← conjugatedVerb

3: if present3PP.containsValue(conjugatedVerb) then
4: infinitiveForm← lookForKey(present3PP, conjugatedVerb)
5: else if present3PS.containsValue(conjugatedVerb) then
6: infinitiveForm← lookForKey(participle, conjugatedVerb)

7: return infinitiveForm

Algorithm 19 getParticiple algorithm (for Portuguese) from PortugueseLabelHelper im-
plementation
1: procedure getParticipleForm(String infinitive)
2: participleForm← participle.get(infinitive.toLowerCase())
3: if participleForm = ∅ then
4: stemmedVerb← steamPrefix(infinitive)
5: if stemmedVerb ̸= ∅ then
6: participleForm← prefix + getParticipleForm(stemmedVerb)

7: if participleForm = ∅ then
8: participleForm← infinitive

9: return participleForm

Algorithm 20 getPresentForm algorithm (for Portuguese) from PortugueseLabelHelper
implementation
1: procedure getPresentForm(String infinitive, Boolean boisSubject, Boolean

boisPlural)
2: presentForm← ∅
3: if boisSubject and boisPlural then
4: presentForm← present3PP.get(infinitive.toLowerCase())
5: else
6: presentForm← present3PS.get(infinitive.toLowerCase())

7: if presentFormm = ∅ then
8: stemmedVerb← steamPrefix(infinitive)
9: if stemmedVerb ̸= then
10: presentForm← prefix + getPresentForm(stemmedVerb)

11: if presentForm = ∅ then
12: presentForm← infinitive

13: return presentForm

APPENDIX A. APPENDIX - ALGORITHMS 151

Algorithm 21 is3PS algorithm (for Portuguese) from PortugueseLabelHelper implemen-
tation
1: procedure is3PS(String word)
2: is3PS← false
3: if present3PS.contains(word) then
4: is3PS← true
5: return is3PS

Algorithm 22 transformToSingularForm algorithm (for Portuguese) from PortugueseLa-
belHelper implementation
1: procedure transformToSingularForm(String pluralNoun)
2: for pluralSuffix є pluralSinguarMap.keySet do
3: if pluralNoun.endsWith(pluralSuffix) then
4: singularSuffix← pluralSinguarMap.get(pluralSuffix)
5: singularNoun ← pluralNoun.replace(pluralSuffix,

singularSuffix)

6: return singularNoun

APPENDIX A. APPENDIX - ALGORITHMS 152

Algorithm 23 getGender algorithm (for Portuguese) from PortugueseLabelHelper imple-
mentation
1: procedure getGender(String noun, Boolean isPlural)
2: gender← LanguageData.Gender_FEM
3: tempNoun← noun.toLowerCase()
4: if tempNoun.contains(“ ”) then ◃ checks if it is composite noun
5: tempNoun← tempNoun.split(“ ”)[0]

6: if isPlural then
7: tempNoun← transformToSingularForm(tempNoun)

8: if genderMap.containsKey(tempNoun) then
9: if genderMap.get(tempNoun).equals(“f ”) then
10: gender← LanguageData.Gender_FEM
11: else
12: gender← LanguageData.GENDER_MAS

13: else ◃ gender is not mapped, try to infer it
14: for femSuffix є LanguageData.feminineSuffixes do
15: if tempNoun.endsWith(femSuffix) then
16: gender← LanguageData.GENDER_FEM

17: formascSuffix є LanguageData.masculineSuffixes do
18: if tempNoun.endsWith(mascSuffix) then
19: gender← LanguageData.GENDER_MAS

20: return gender

Algorithm 24 getArticle algorithm (for Portuguese) from PortugueseLabelHelper imple-
mentation
1: procedure getArticle(String noun, Boolean isObject, Boolean isIndef, Boolean

isPlural)
2: article← ∅
3: articleIndex← getGender(noun, isPlural)
4: if isPlural then
5: articleIndex++
6: if isObject and isIndef then
7: article← LanguageData.indefArticles[articleIndex]
8: else
9: article← LanguageData.defArticles[articleIndex]

10: return article

APPENDIX A. APPENDIX - ALGORITHMS 153

Algorithm 25 isDefArticle algorithm (for Portuguese) from PortugueseLabelHelper im-
plementation
1: procedure isDefArticle(String word)
2: isDefArticle← false
3: if LanguageData.defArticles.contains(word) then
4: isDefArticle← true
5: return isDefArticle

Algorithm 26 isPronoun algorithm (for Portuguese) from PortugueseLabelHelper imple-
mentation
1: procedure isPronoun(String word)
2: isPronoun← false
3: if LanguageData.pronouns.contains(word) then
4: isPronoun← true
5: return isPronoun

Algorithm 27 getPronouns algorithm (for Portuguese) from PortugueseLabelHelper im-
plementation
1: procedure getPronouns
2: if pronouns = ∅ then
3: pronouns ← LanguageData.demPronouns U

LancuageData.pronouns

4: return pronouns

APPENDIX A. APPENDIX - ALGORITHMS 154

Algorithm 28 posTagging algorithm
1: procedure posTagging(words)
2: if sytaticRoleMap = ∅ then
3: syntacticRoleMap← new Map<String, Integer>()

4: for word є words do
5: if syntacticRoleMap.notContains(word) then
6: if isVerb(word) then
7: syntacticRoleMap.put(word, PortugueseLabelHelper.POS_VERB)
8: else if isNoun(word) then
9: syntacticRoleMap.put(word, PortugueseLabelHelper.POS_NOUN)
10: else if isAdjective(word) then
11: syntacticRoleMap.put(word, PortugueseLabelHelper.POS_ADJ)
12: else if isAdverb(word) then
13: syntacticRoleMap.put(word, PortugueseLabelHelper.POS_ADVERB)
14: else
15: ignoredWords.add(word)
16: words.remove(word)

17: return syntacticRoleMap

B. Appendix - Process Models and Textual Descriptions

This appendix presents some simple process, written in both Portuguese and English,
that were used as input for the tool and the natural language text, was generated as the
output. After automatically generating the process textual description from the model, it
was then submitted to the framework for asserting if themodel produced as outputmatched
the original process model. These models were used to test if the tool was capable of
generating texts for both languages correctly.

The first process, depicted by Figure B.3 and Figure B.4, presents a simple exam ap-
plication process. The main actors of this process are: Teacher (Professor), Secretary
(Secretaria) and Student (Aluno). First, the teacher prepare the exam. Then, the student
do the exam. After that, the teacher receives the exam and corrects it. After the correction,
the teacher deliver the grade to the secretary, which input the grade in the student’s grades
history. Tables B.1 and B.2 provides the textual description generated by the framework
for the models used as input.

Table B.1: English Natural Language Text generated by analyzing the process model data
and extracting textual information.

The process begins when the Teacher creates the test. Then, the Student does the test.
Afterwards, the Teacher corrects the test. Subsequently, the Teacher delivers grade to the
Secretary. Then, the Secretary saves grade to the Student’s profile. Finally, the process
finishes.

The second process, depicted by Figure B.3 and Figure B.4, represents a simple request
order received by the Secretary. The main actors are: Secretary andManager. The process
starts when the secretary receives a request order from a client. If the client is already in
the system, the secretary update the client’s data. After that, the manager receives the
request order and conclude the request. Finally, the process finishes. Tables B.9 and B.4
provides the textual description generated by the framework for the models used as input.

155

APPENDIX B. APPENDIX - PROCESSMODELS AND TEXTUALDESCRIPTIONS156

Figure B.1: Simple Exam application process, written in English.

Figure B.2: Simple Exam application process, written in Portuguese.

APPENDIX B. APPENDIX - PROCESSMODELS AND TEXTUALDESCRIPTIONS157

Table B.2: Portuguese Natural Language Text generated by analyzing the process model
data and extracting textual information.

O processo começa quando o Professor elabora a prova. Então, o aluno realiza a prova. Em
seguida, o professor corrige a prova. Subsequentemente, o professor conduz a atividade
de entregar nota para secretaria. Então, a secretaria cadastra a nota no histórico do aluno.
Finalmente, o processo é terminado.

Figure B.3: Simple Secretary process, written in English.

Table B.3: English Natural Language Text generated by analyzing the process model data
and extracting textual information.

The process begins when the Secretary receives an order. In case the Customer is reg-
istered, the Secretary updates the customer data. Then, the Manager closes the order.
Finally, the process finishes.

Table B.4: Portuguese Natural Language Text generated by analyzing the process model
data and extracting textual information.

O processo começa quando o Secretário recebe o pedido de compra. Caso o cliente é
cadastrado, o Secretário atualiza o cadastro. Então, o gerente finaliza o pedido. Final-
mente, o processo termina.

The third process, depicted by Figure B.5 and Figure B.6, represents a hotel room ser-
vice process. The main actors are: Waiter, Barman, Kitchen and Room Service Manager.

Figure B.4: Simple Secretary process, written in Portuguese.

APPENDIX B. APPENDIX - PROCESSMODELS AND TEXTUALDESCRIPTIONS158

Figure B.5: Hotel Service process, written in English.

Tables B.5 and B.6.

Table B.5: English Natural Language Text generated by analyzing the process model data
and extracting textual information.

The process begins when the Room-Service Manager takes down an order. Then, the
process is split into 3 parallel branches:

• In case alcoholic beverages are ordered, the Room-Service Manager gives order to
the Sommelier. Afterwards, one or more of the following paths are executed:

– The Sommelier fetches wine from the cellar.

– The Sommelier prepares the alcoholic beverages.

• The Room-Service Manager submits the order ticket to the Kitchen. Subsequently,
the Kitchen prepares the meal.

• The Room-Service Manager assigns order to the Waiter. Then, the Waiter readies
the cart.

As long as all the 3 branches were executed, the Waiter delivers to the guest’s room.
Afterwards, the Waiter returns to the room-service. Subsequently, the Waiter debits from
the guest’s account. Finally, the process finishes.

The forth process, depicted by Figure B.7 and Figure B.8, represents a bread delivery

APPENDIX B. APPENDIX - PROCESSMODELS AND TEXTUALDESCRIPTIONS159

Figure B.6: Hotel Service process, written in Portuguese.

Table B.6: Portuguese Natural Language Text generated by analyzing the process model
data and extracting textual information.

O processo começa quando oGerente serviço de quarto recebe o pedido. Então, o processo
é dividido em 3 ramificações paralelas:

• Caso bebidas alcoólicas são pedidas, o Gerente serviço de quarto entrega o pedido
para o barman. Em seguida, os seguintes caminhos são executados:

– O Barman pega o vinho da adega.

– O Barman prepara as bebidas alcoólicas.

• O Gerente serviço de quarto entrega o pedido para o garçom. Subsequentemente, o
garçom prepara a nota.

• O Gerente serviço de quarto submete o pedido para cozinha. Então, a cozinha
prepara a comida.

OGarçom entrega para o quarto do hospede. Em seguida, o garçom retorna para serviço de
quarto. Subsequentemente, o garçom debita da conta do hospede. Finalmente, o processo
é terminado.

subscription process. The main actors are: Customer, Financial Department, Deliver Ser-
vice and Marketing. In a nutshell, the process describes a subscription service that allows

APPENDIX B. APPENDIX - PROCESSMODELS AND TEXTUALDESCRIPTIONS160

Table B.7: English Natural Language Representation for the Bread delivery service sub-
scription .
The process begins when there is advertising available for the customer. Then, the customer understands the proposal and understands
the signature service. Afterwards, the customer verifies if he is interested:
- If he is not interested, then the process finishes.
- If he is interested, then he submits his personal data. Afterwards, he checks whether or not the region is covered:

• If the region is not covered, then the process finishes.

• If the region is covered, then he submits the signature and chooses the plan. Afterwards, he checks if the plan is suitable:

– If the plan is not suitable, then the Marketing department registers disinterest. Finally, the process finishes with the
signature canceled.

– If the plan is suitable, the customer configures the signature. Afterwards, he executes one or more of the following
branches:

* The customer pays with money.

* The customer uses a voucher for discount.

* The customer pays with credit card.

– Afterwards, the Financial Department processes the payment and verifies if the payment is ok:

* If the payment is successful, then the Financial Department notifies the payment. Afterwards, the Delivery
Service schedules the delivery. Subsequently, the process is divided into two parallel branches:

· The Deliver Service delivers the bread to the customers

· The Deliver Service receives the payments.

* If the payment is not ok, then the Marketing department registers disinterest. Finally, the process finishes with
the signature canceled.

* Once all the branches are executed, the process finishes with the signature saved.

customers to sign to a bread delivery service for receiving bread at home according to the
customer preferences. Tables B.7 and B.8 provides the textual description generated by
the framework for the models used as input.

The fifth process depicted by Figure B.9 and Figure B.9, represents a claims handling
process. This process was provided byQueenslandUniversity of Technology1 (QUT). The
main actors are: handling department and Notification department. It can be described
as follows: The process starts when a customer submits a claim by sending in relevant
documentation. The Notification department at the car insurer checks the documents upon
completeness and registers the claim. Then, the Handling department picks up the claim
and checks the insurance. Then, an assessment is performed. If the assessment is positive,
a garage is phoned to authorize the repairs and the payment is scheduled (in this order).
Otherwise, the claim is rejected. In any case (whether the outcome is positive or negative),
a letter is sent to the customer and the process is considered to be complete.

1University located in Brisbane, Australia, home page is accessible under https://www.qut.edu.
au/

https://www.qut.edu.au/
https://www.qut.edu.au/

APPENDIX B. APPENDIX - PROCESSMODELS AND TEXTUALDESCRIPTIONS161

Figure B.7: English Bread delivery service subscription in BPMN.

APPENDIX B. APPENDIX - PROCESSMODELS AND TEXTUALDESCRIPTIONS162

Figure B.8: Portuguese Bread delivery service subscription in BPMN.

APPENDIX B. APPENDIX - PROCESSMODELS AND TEXTUALDESCRIPTIONS163

Table B.8: Portuguese Natural Language Representation for the Bread delivery service
subscription .
O processo começa quando há um anúncio disponível para o cliente. Então, o cliente entende a proposta e entende o serviço da
assinatura. Subsequentemente, o cliente verifica se possui interesse:
- Se não possuir interesse, então o processo termina.
- Se possuir interesse, então ele informa os dados básicos. Após informar os dados básicos, ele verifica se a região é atendida:

• Se a região não for atendida, então o processo termina.

• Se a região for atendida, então ele solicita o cadastro na assinatura e escolhe o plano. Depois disso, ele verifica se o plano é
adequado:

– Se o plano não for adequado, então o Marketing cadastra a desistência de assinatura. Em seguida, o processo termina
com a desistência de assinatura.

– Se o plano for adequado, o cliente configura a assinatura. Após configurar a assinatura, ele executa uma ou mais das
seguintes atividades:

* O cliente efetua o pagamento com dinheiro.

* O cliente efetua o pagamento com cartão de credito.

* O cliente usa um voucher de desconto.

– Em seguida, oDepartamento de finanças processa o pagamento. Após processar o pagamento, o departamento verifica
se o pagamento foi liberado:

* Se o pagamento foi liberado, então o Departamento de finanças notifica a liberação de pagamento. Então,
o Entregador agenda o início da entrega. Subsequentemente, o processo é dividido em duas ramificações
paralelas:

· O Entregador entrega o pão para os assinantes.

· O Entregador recebe os pagamentos.

* Se o pagamento não foi liberado, então o Marketing cadastra a desistência de assinatura. Em seguida, o pro-
cesso termina com a desistência de assinatura.

* Quando ambas as ramificações tiverem sido completadas, o processo termina com a assinatura cadastrada.

Figure B.9: claims handling process .

APPENDIX B. APPENDIX - PROCESSMODELS AND TEXTUALDESCRIPTIONS164

Table B.9: English Natural Language Text generated by analyzing the Claims Handling
process model and extracting textual information.

The process begins when the Notification Department checks the documentation. Next,
the Notification Department registers the claim. Afterwards, the Handling Department
checks the insurance and performs the assessment. Following, the Handling Department
verifies if the assessment is positive:

• If the assessment is positive, then the Handling Department arranges the repair.
Subsequently, it schedules the payment.

• If the assessment is negative, then the Handling Department rejects the claim.

The Handling Department notifies the customer. Finally, the process finishes.

C. Appendix - Extending the Framework to new languages

To add support to a new language, the following steps must be executed:

• Creation of a Project responsible for the implementation of the several interfaces.
None of the classes in the main project needs to be created or modified (with the
exception of the configuration class, explained in the second step). The interfaces
to be implemented in the new project are:

– ILabelDeriver

– ILabelHelper

– ILabelProperties

– ISurfaceRealizer

– INaturalLanguageProcessor

– ITextFormatter

In this thesis, the Project “RealizerPort” corresponding to the PortugueseRe-
alizer package was developed, to the manipulation of business process models
written in Portuguese.

• Extension of the localization modules through the addition of a dictionary that con-
tains the respective translations for the given Keys, defined in the localization mod-
ule. In order to do that, its enough to create a text file with some structure similar
to the one presented in Figure C.1 with the keys and their translations for the given
language. The file should be saved into the localization module directory. The file
name must be named according to the pattern “Dictionary_NameOfLanguage”, for
example, “Dictionary_Portuguese”. The module searches, during execution time,
for the respective dictionary for the current language and loads the translations to
be used during the process of natural text generation from process models.

165

APPENDIXC. APPENDIX - EXTENDINGTHEFRAMEWORKTONEWLANGUAGES166

Figure C.1: Dictionary file structure. In this example, it is shown a Portuguese dictionary
file.

• Add reference to the new Project or library responsible for the implementation of
the operations defined in the Project GeneralLanguageCommon in the method
“SetCurrentLanguage” of the LanguageConfig class in the main Project. An
improvement to be done is reading the necessary configurations through a .xml or
.txt file, by some sort of dependency injection mechanism. With this modification,
it will not be necessary any change in the main Project, responsible for the frame-
work’s execution.

• All the other components do not have to be modified. In other words, regarding the
NLG pipeline, the only step that needs to be changed for the new language is the
last one (Message Realization). All the necessary algorithms to the macro steps of
Text Planning and Sentence Planning are used through the interfaces defined in the
LabelAnalysis package of the generic project GeneralLanguageCommon.
Regarding the NLP pipeline, there is no need to apply any change besides imple-
menting both NLP interfaces which are INaturalLanguageProcessor and ITextFor-
matter.

