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ABSTRACT 

A declarative approach can be employed to describe only essential process char-

acteristics, thus requiring explicit definition of constraints that limits process execution 

possibilities. This perspective is appropriated when dealing with unstructured or flexible 

processes. However, declarative process mining may result in complex models due the 

discovery of a high quantity of constraints, producing a cluttered model even for models 

with few activities. Excessive complexity is one of the major barriers to end users under-

standing software engineering diagrams and, analogously, business process models may 

suffer from the same problem. As abstractions are seen as an effective approach to repre-

sent readable models, showing aggregated activities and hiding irrelevant details, this 

work proposes to create language-independent hierarchical declarative maps using a lin-

guistic hierarchy of activities. The proposed approach applies Natural Language Pro-

cessing techniques for the construction of more abstract declarative models produced by 

process mining, where hypernymy and holonymy sense relations are applied for finding 

semantic hierarchies among words present in activity labels. The presented method was 

evaluated in a case study with real life data and support from domain experts. The findings 

showed that it is possible to generate meaningful groups by looking for the semantics of 

activity labels in order to create abstract process views with reduced complexity, starting 

from a low-level declarative map. 
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RESUMO 

Uma abordagem declarativa pode ser empregada para descrever somente as ca-

racterísticas essenciais de um processo, assim requerendo a definição explícita das restri-

ções que limitam as possibilidades de execução de um processo. Esta perspectiva é apro-

priada quando se lida com processos flexíveis ou não estruturados. No entanto, a minera-

ção de modelos declarativos de processos pode resultar em modelos complexos devido à 

descoberta de uma grande quantidade de restrições, produzindo modelos difíceis de in-

terpretar, mesmo com poucas atividades. A complexidade excessiva é uma das principais 

barreiras dos usuários finais na interpretação de diagramas de engenharia de software, e, 

analogamente, modelos de processos de negócio podem apresentar o mesmo problema. 

Como abstrações são vistas como uma abordagem efetiva para apresentar modelos legí-

veis, mostrando atividades agregadas e omitindo detalhes irrelevantes, este trabalho pro-

põe a criação de mapas declarativos hierárquicos independentes da linguagem de mode-

lagem, utilizando uma hierarquia linguística de atividades. A abordagem proposta aplica 

Processamento de Linguagem Natural para a construção de modelos declarativos mais 

abstratos produzidos através da mineração de processos. Para isso, as relações semânticas 

hiperonímia e holonímia são aplicadas para a descoberta de hierarquias entre as palavras 

presentes nos rótulos das atividades de um processo.  O método apresentado foi avaliado 

em um estudo de caso com dados de um processo real e com suporte de especialistas no 

domínio. Os resultados mostraram que é possível gerar grupos de atividades significativos 

analisando os rótulos das atividades, de maneira a possibilitar a criação de visões mais 

abstratas e com complexidade reduzida de um processo, partindo de um mapa declarativo 

de nível mais detalhado. 
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Chapter 1 - Introduction 

This chapter presents the main aspects of this research, including its motivating 

factors, the problem characterization, the hypothesis to be investigated and a solution 

proposal. In addition, the research methodology and thesis structure are presented. 

1.1 Motivation and Problem Characterization 

Business Process Management (BPM) includes methods, techniques and tools to 

support the design, enactment, management, and analysis of operational business pro-

cesses (VAN DER AALST et al, 2003). Besides the traditional use of process models 

within software engineering, they are more and more used for pure organizational pur-

poses. Within BPM, process modeling is supposed to be an instrument for coping with 

the complexity of process planning and control (BECKER et al, 2000). 

A process modeling language must provide concepts for representing processes. 

An imperative process modeling language focuses on the aspect of continuous changes 

of the process’ objects, where each object’s life can be described in terms of a state space 

that formulates its possibilities to get from one location to another, by the so-called state 

changes. In addition, its transition space formulates how distinct actions, events and 

changes can possibly succeed each other during the execution of a business process 

(FAHLAND et al., 2009). Imperative process modeling is characterized by an inside-to-

outside approach. It primarily specifies the procedure of how work has to be done 

(PICHLER et al., 2012). 

A declarative process modeling language, by contrast, focuses on the logic that 

governs the interplay of actions and objects of a business process. Its concepts describe 

the key qualities of distinct objects and actions, and how they relate to each other in time 

and space. These relations may be arbitrary and do not need to be continuous. A declara-

tive language is insensitive to how a process works; rather, it aims to describe what the 

essential characteristics of a business process are (FAHLAND et al., 2009). Declarative 

process modeling is referred to as an outside-to-inside approach. In contrast to imperative 

languages, declarative languages do not specify the procedure a priori (PICHLER et al, 

2012). 
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Process mining techniques allow knowledge extraction from events stored by in-

formation systems. It allows the automatic creation of process models by analyzing data 

from previous process executions stored in software systems, what should be infeasible 

for doing manually depending on the amount of data involved. They are also an important 

connection between data mining and business process management. The interest on this 

topic has grown due to the advancement on computers technology and processes man-

agement, so even more events can be registered on event logs and more details about 

business process are available. In addition, there is a need for improving and supporting 

business processes in a competitive and rapid changing environment, as stated by VAN 

DER AALST et al. (2012). It is an emerging discipline which provides sets of tools to 

support fact-based insights and allow process improvements. The idea of process mining 

is to discover, monitor and improve real life processes by extracting knowledge from 

event logs readily available in contemporary information systems (VAN DER AALST, 

2011). 

The motivation for this work comes from the differences between imperative and 

declarative paradigms on process mining scenarios. Figure 1.1a shows a city railways 

diagram. There, one can see the paths where the trains can go through and it is known 

that they cannot move outside the rails. This is an imperative perspective, in which every 

possible behavior is made explicit. On the other hand, Figure 1.1b shows a vessel navi-

gating through some nautical signs. We assume the ocean waterways are opened and, for 

security reasons, there is a need to avoid some dangerous places indicated by the signals. 

This is a declarative manner to describe the scenario, where the undesired behavior is 

constrained and the user is free to move around, just respecting the constraints defined. 

 

Figure 1.1: Imperative vs. Declarative paradigms. 
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Figure 1.2: Model discovery of a well-structured process. 

When analyzing a structured process (as in the railways example) with a well-

known behavior, process mining has good chances to discover readable process models. 

This type of model displays all allowed paths, just as depicted in Figure 1.2. 

However, in an unstructured process (as in the vessel example), there may exist 

multiple paths. When trying to discover a process model in the same way as presented 

before, there is a possibility to end up with a spaghetti-like model (Figure 1.3). This type 

of model is almost incomprehensible and does not help on understanding the behavior of 

a business process. 

 

Figure 1.3: Model discovery of an unstructured process. 

As shown above, automatically discovered models tend to be big and complex, 

especially on flexible scenarios, where process execution involves multiple alternatives. 

This behavior is common in domains such as medical treatments of patients, for example. 

In those scenarios, the information overload reduces model comprehensibility because 

traditional techniques used on discovery try to model every possible process behavior. 
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LA ROSA et al. (2011) said it is possible to relate process model complexity to its under-

standability. The authors state that an increase in size of a business process model may 

lead to comprehension problems. In addition, they state that for complex models it be-

comes difficult to validate, maintain and communicate them by its stakeholders. Thus, 

the understandability issues related to model complexity should be a concern for business 

analysts when creating and maintaining business process models.  

According to FAHLAND et al. (2009), traditional process mining techniques usu-

ally represent discovered process using a so-called procedural or imperative modeling 

language, that is, one that focuses on the process control flow and the execution sequence 

of activities. Imperative models are appropriate to represent well-structured models, be-

cause they provide better support for analysis and execution direction. On the other side, 

unstructured processes need flexibility to drive changes and deviations on the activities 

flow. VAN DER AALST et al. (2009) show how a declarative approach enables a better 

balance between flexibility and support. While an imperative model describes exactly 

how a process must be executed, in a declarative way only essential model characteristics 

are described, thus requiring explicit definition of restrictions that limits process execu-

tion possibilities (REIJERS et al., 2013).  

However, declarative process mining techniques may produce models with a high 

quantity of constraints, which may be incomprehensible for humans. Once dealing with 

flexible or unstructured models, the chance to obtain a model with this characteristic is 

higher. When a declarative process mining algorithm is used to discover a model from a 

flexible or unstructured process, it is expected to mine only constraints that limit process 

behavior. However, depending on the characteristics of the business process and the al-

gorithms used, it is possible to end up with another spaghetti-like model, with lots of 

constraints (Figure 1.4). Also, the combination of constraints in a declarative process 

model might generate new hidden dependencies, which are complex and difficult to be 

identified by humans (HAISJACKL et al., 2013). REIJERS et al. (2013) said the increas-

ing number of restrictions negatively affects the model quality. Even few activities with 

many restrictions can result in hard to understand models (MAGGI et al., 2012). 
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Figure 1.4: Declarative model discovery of an unstructured process. 

This work addresses the problem of high complexity of declarative models gener-

ated by automatic process mining due the presence of a great number of discovered con-

straints that clutter a model.  

1.2 Hypothesis and Solution Proposal 

Considering the high complexity of declarative models created by process mining, 

and the possibility to improve the understanding of such class of process models, the 

hypothesis guiding this research is stated as: 

IF semantics is used to find abstraction and aggregation relations between activ-

ity labels in a declarative model THEN it will be possible to generate groups of activity 

labels, with useful meanings for domain stakeholders, enabling the creation of abstrac-

tions over declarative process models in order to produce process views with reduced 

complexity. 

From a business process perspective, subprocesses in declarative models behave 

differently than in procedural models: on imperative models, every process fragment 

ranging from a single entry and a single exit (SESE) can be grouped as a complex activity 

(WEBER et al., 2011). On declarative models, this structure is not informative enough, 

because the activities’ sequence is not rigid, and the structural grouping of activities is 

inadequate. For declarative models, it should consider a common objective of the grouped 

activities (ZUGAL et al., 2013). The activities in a group should relate to a similar inten-

tion (SOFFER et al., 2012), making possible for a stakeholder to understand, in an more 

abstract view, that a group has a set of activities with a specific goal within the overall 

goal of a business process. 

The use of modularization to hierarchically structure information was identified 

as a viable approach to deal with complexity for decades (HAISJACKL et al., 2013). 

Therefore, the present proposal intends to reduce declarative business process models 
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complexity by automatically generating process hierarchies (defined by groups of activi-

ties), in which the proposed groups generalize lower level activities according to semantic 

relations. This kind of generalizations, i.e., abstractions and aggregations, are extensively 

used in database domains, and according to SMITH et al. (1977), generalizations are per-

haps the most important mechanism for conceptualizing the real world. In addition, 

SMIRNOV et al. (2011) said that abstractions are seen as an effective approach to repre-

sent readable models, showing aggregated activities and hiding irrelevant details, and hi-

erarchies may be used to perform aggregation, thus reducing the mental effort to under-

stand a model (ZUGAL et al., 2013). While there exists a trade off between model size 

and the degree of hierarchy, it has been observed that, for larger models, hierarchy may 

have a positive influence on understandability (ZUGAL et al., 2013). Inspired by these 

previous works, the proposed solution is to retrieve semantic generalizations among ac-

tivity labels in a process model to create groups of similar activities, and then use these 

groups to create more abstract views in declarative maps that should be less complex than 

the original low-level declarative map.  

1.3 Research Goals 

To cope with the high complexity of the automatically discovered declarative 

models, the present research proposes to create language-independent hierarchical declar-

ative maps using a linguistic-driven hierarchy of activities, by grouping activities with 

common semantics instead of using process structure to create groups. 

1.4 Scientific Method 

The first step of the method consisted in conducting a bibliographic review in 

order to: 

 Collect information about the state of art on process mining, process model ab-

straction and natural language processing (NLP) on business process models; 

 Identify existing techniques to deal with complexity over discovered declarative 

process models;  

 Delineate a rationale through which the proposed solution will increase the body 

of knowledge in business process management and reach the research goals.  
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The next step was the development of algorithms to handle process model’s ac-

tivity labels and then find semantic similarities using NLP. This step was followed by the 

implementation of the algorithms, and a prototype-running software, in order to run ex-

periments to evaluate the solution. After several tests and tuning of algorithm’s parame-

ters, a case study was conducted with real life process execution data. An event log was 

used to generate a declarative map, and the proposed method was applied to create an 

abstraction layer over the map, aiming to produce a less complex model. This research 

proposal was evaluated through an explanatory approach (RECKER, 2012) and an exper-

iment. In order to assess the usefulness of group suggestions by following the requirement 

of having activities in a group with similar intentions (ZUGAL, 2013), an online survey 

with domain specialists was performed. A quantitative analysis was conducted on the data 

gathered by the experiment and was evaluated using process models complexity metrics 

to confirm complexity reduction on the resulting declarative map with abstractions. 

1.5 Document Structure 

The remaining of this work is structured as follows: Chapter 2 presents theoretical 

background, where declarative modelling, process mining and natural language pro-

cessing fundamentals are explained. Chapter 3 analyzes related work and its importance 

for this research. Chapter 4 details the proposed method and shows an example execution. 

Chapter 5 discusses a case study performed in a real world environment. Chapter 6 con-

cludes this thesis with final considerations about its contributions, difficulties found dur-

ing the development of the research and future works.  
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Chapter 2 - Theoretical Background 

This chapter presents the theoretical background necessary to build the solution 

proposal. The fundamentals of business process management, process modeling, process 

mining and their interplay with natural language processing are discussed, with special 

emphasis on declarative models that are the focus of this research.  

2.1 Business Process Management 

“Business Process Management is the art and science of overseeing how work is 

performed in an organization to ensure consistent outcomes and to take advantage of im-

provement opportunities.” (DUMAS et al., 2013). Processes are everywhere in organiza-

tions, where they need to manage their own processes, even when they are not aware of 

them. Some typical processes are order-to-cash, procure-to-pay, issue-to-resolution and 

application-to-approval. Business processes are what organizations do to deliver a prod-

uct or a service to their customers (DUMAS et al., 2013). From the management perspec-

tive, it is very important to know which processes are intended to be improved and how 

to do it. The BPM lifecycle (Figure 2.1) supports these tasks (VAN DER AALST, 2013) 

by structuring phases that direct business process management.  

 

Figure 2.1: The BPM lifecycle and its three phases (VAN DER AALST, 2013). 
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The (Re)design phase consists on producing or updating a process model, that can 

be implemented or configured to the next phase. Afterwards, the process runs, and then 

it is enacted and adjusted if needed. In this phase (Run and Adjust) the process is not 

redesigned, only predefined controls are adjusted to adapt the process. The running pro-

cess produces event data that can be collected by information systems to drive data-based 

analysis. This event data can be used to discover opportunities for improvement, such as 

bottlenecks, time waste and deviations. This is the input to the redesign phase, where 

process models are analyzed against the information produced by their own execution. 

2.2 Knowledge Intensive Processes 

Knowledge Intensive Processes (KIPs) are characterized by their operation’s com-

plexity (ABECKER et al, 2001), where each decision step is based on the experience of 

the people executing the process. In addition, they are considered people-centric pro-

cesses, once they are performed by autonomous decision makers with different back-

grounds, experience and expertise, also called knowledge workers (DAVENPORT, 

2005). BAYER et al. (2006) states that KIPs are distinguished by their dynamic course 

of action where it is needed an environment with sufficient flexibility to support quick 

changes of resources and tasks involved on the process. 

This type of process demands more interactions among process’ participants, and 

as they commonly present a loose structure, people involved in a KIP need to communi-

cate and use previous experiences for solving new issues and include innovation in their 

decisions, in order to reach the process goals (FRANÇA, 2012). MALDONADO (2008) 

states that a KIP is a semi or unstructured process with a high level of dynamic complex-

ity, which is highly dependent on tacit and explicit knowledge of process’ participants. 

2.3 Business Process Modeling – Imperative versus declarative perspectives 

Business process models are important at various stages of the BPM lifecycle, 

from the initial as-is model, passing through the execution, to the to-be model produced 

after the redesigned phase. There are many reasons for modeling a process, a simple but 

important one has great importance: to understand the process and share this understand-

ing among people involved with the process. The idea is to provide a better communica-

tion of the process behavior to its users and then make people able to identify and prevent 
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issues (DUMAS et al., 2013). The increasing adoption of BPM due the need of manage 

and document business processes foster the use of process models. Process models can 

also be used in different scenarios, such as providing knowledge, analyzing and redesign-

ing processes (DAVENPORT et al., 1990) or specifying system requirements (DUMAS 

et al., 2005).  

Business processes may be represented in various ways, including by textual de-

scriptions. However, as a means of communication, they need to be easily comprehended, 

and large textual information may become difficult to understand, and subject to misin-

terpretations. To avoid this problem, it is common to represent process models as dia-

grams. If all the stakeholders are aware of the adopted graphical notation, models may be 

more easily comprehended, with less risk of misunderstandings (DUMAS et al., 2013). 

While an imperative perspective for process representation specifies exactly how 

things must be done, a declarative approach focuses on the logic that governs interactions 

between the actions of a process, describing what can be done, restricting only the unde-

sired behavior (ZUGAL et al, 2013). Figure 2.2 depicts how a declarative approach based 

on constraints allows much more behavior than traditional approach, restricting only the 

undesired behavior. 

 

Figure 2.2: Different execution possibilities between imperative (traditional) and declar-

ative (constraint-based) approaches (VAN DER AALST, 2009).2.3.1 Imperative Pro-

cess Modeling Languages 

There exist many languages to model imperative processes diagrammatically. The 

most basic are the flowcharts, consisting of rectangles to represent activities, and dia-

monds representing decision points. Today, several modeling languages are available, 

such as:  

 UML Activity Diagram – AD (OMG, 2005): aims to model process and flow in 

software systems; 
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 Business Process Modeling Notation (BPMN) (OMG, 2011): developed for busi-

ness processes modeling and execution. Its main concepts are similar to Activity 

diagrams; 

 Event Driven Process Chain (EPC) (SCHEER, 1999): developed for business pro-

cesses modeling. Its goal is to be easy to understand and to be used by business 

professionals. The basic elements are functions and events. Functions model ac-

tivities from a process, while events are created by functions or external actors; 

 Integrated Definition Method 3 (IDEF3) (MAYER et al., 1995): designed for 

modeling business processes and system flows. It has two perspectives: process 

scheme (process sequence model) and object scheme (object model and states 

transitions in a given process); 

 Petri Nets (PETERSON, 1981): developed for modeling, analysis and simulation 

of dynamic systems with concurrency and non-deterministic procedures. They are 

used to model workflows; 

 Role Activity Diagram (RAD) (HUCKVALE & OULD, 1995): presents roles, 

activities and interactions, also with external events. 

All these languages have in common a procedural or imperative nature. That is, 

they require all execution alternatives to be explicitly specified in the model before the 

execution of the process. All new alternatives must be added to the model during design-

time (PICHLER et al, 2012). If a behavior is not present in the model, it is considered 

forbidden. 

2.3.1 Declarative Process Modeling Languages 

An example of declarative modeling language is Declare (VAN DER AALST, 

2009), which is grounded on restrictions modeled by linear temporal logic (LTL) expres-

sions. LTL is a special type of logic that, in addition to the classical logical operators, also 

), until (U) and next time (O). 

In Declare, templates represent a set of LTL expressions. These templates define relations 

between activities in a process model. A set of Declare constraints is presented in tables 

2.1 (a) and (b). As an example, the LTL expression !((A)(B)) corresponds to the not-

coexistence(A,B) Declare constraint template. 

Table 2.1a: Existence and Choice Declare Constraints. 
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Another approach for declarative process modeling is the use of Dynamic Condi-

tion Response Graphs (DCR Graphs), proposed by HILDEBRANDT et al (2010). A DCR 

Graph consists of activities, relations and runtime marking. Rectangles with an “ear” rep-

resent activities, and the “ear” contains the roles, which can execute the activity. The 

relations are drawn as arrows between activities with specific signs depending on the 

relation type. It is possible to nest activities under super-activities, in which case any 

relation that applies to the super-activity, applies to all its sub-activities. 

Only atomic activities (that do not contain any sub-activities of their own) are 

executable (REIJERS et al., 2013). The core DCR Graphs model contains four binary 

relations between activities: dynamic inclusion, dynamic exclusion, condition and re-

sponse relations (HILDEBRANDT et al. 2012). Table 2.2 shows these relations. A com-

plete example of an execution of a DCR Graph is presented in (DEBOIS et al., 2014). 

CARVALHO et al. (2013) proposed ReFlex, a graph based rule engine for the 

execution of declarative processes. The authors built a rule engine that is able to verify 

rules at runtime and control the execution of declarative processes. ReFlex has a graphical 

TYPE CONSTRAINT TEMPLATE MEANING NOTATION

existence(A) activity A has to be executed at least once.

existence2(A) activity A has to be executed at lest two times.

existence3(A) A has to happen at least three times.

absence2(A) A can happen at most once.

absence3(A) A can happen at most two times.

exactly1(A) A has to happen exactly once.

exactly2(A) A has to happen exactly two times.

absence(A) A can never be started

responded existence(A,B)
If A happen (at least once) then B has to have (at least 

once) happpened before or has to happen after A. 

co-existence(A,B)

If A happen (at least once) then B has to have (at least 

once) happpened before of has to happen after A. And 

vice versa.

choice(A,B) At least one from A and B has to be executed.

exclusive choice(A,B) A or B has to happen but not both.

Existence

Choice
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notation base on specialized edges that connect vertexes in a graph. Table 2.3 presents 

the edge types and their meaning and also its correspondence to Declare templates. Their 

graph-based engine claims that it is more efficient than traditional LTL-based verification 

systems, because they do not need to build a finite automata that grows exponentially in 

size for realistic models. However, the authors presented a limited set of rules that limits 

expressiveness when compared, for example to the Declare language. 

Table 2.1b: Negation and Order Declare Constraints. 

 

 

Both languages have tool support for design, enactment and execution of models, 

but only Declare offers support for analysis of Declare maps through the ProM1 frame-

work and support for process mining through the Declare Miner (MAGGI et al, 2011). 

                                                 
1 For ProM refer to: http://www.processmining.org/prom/start. 

TYPE CONSTRAINT TEMPLATE MEANING NOTATION

not co-existence(A,B)
Only one of the two tasks activity A or activity B can be 

executed, but not both.

not succession(A,B) Before B there cannot be A and after A there cannot be B.

not chain succession(A,B) A can never be executed directly after B.

init(A) A is the first activity to be executed.

last(A) A is the last activity to be executed.

response(A,B)
Whenever activity activity A is executed, activity B has to 

be eventually executed afterwards.

precedence(A,B)
Activity B has to be preceded by activity A. Activity B can 

happen only after activity A had happened.

succession(A,B) Response and precedence together.

alternate response(A,B)
After each A is executed at least one B is executed. 

Another A can be executed again only after the first B.

alternate precedence(A,B)
B cannot happen before A. After it happens, it can not 

happen before the next A again.

alternate succession(A,B) Alternate response and alternate precedence together.

chain response(A,B) After A the next one has to be B.

chain precedence(A,B) B can be executed only directly after A.

chain succession(A,B) A and B can happen only next to each other.

Order

Negation
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For the scope of this work, both languages have sufficient expressiveness to be adopted 

for our proposed approach. 

Table 2.2: DCR Graphs relations. 

 

Table 2.3: ReFlex’s list of edge types and their representation (CARVALHO et al., 

2013). 

 

In general, a declarative process model P = (A, C, ) can be defined as a triple 

consisting of: A, a finite non-empty set of activities; C, a finite set of constraints; and  a 

finite non-empty set of concepts which describe the constraints of a declarative language. 

2.4 Process Mining 

Process mining provides means to improve processes in a variety of applications 

domains (VAN DER AALST, 2011) due to two main reasons: First, more and more 

events are being recorded every day, providing detailed information about the history of 

processes, in a way never did before. Second, although Business Process Management 

and Business Intelligence software promise miracles, they did not completely fulfill the 

expectations from academics, consultants and vendors. 

RELATION MEANING NOTATION

dynamic inclusion
The relation expresses that, whenever event A 

happens, it will include B in the graph

dynamic exclusion
The relation expresses that, whenever event A 

happens, it will exclude B in the graph

condition

If an event B has event A as condition, then event A 

must either be currently excluded or have 

happened for B to happen.

response
If an event B is a response to an event A then B 

must happen at some point after event A happens
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Process mining is considered a discipline, with aims to provide fact-based insights 

and to support process improvements. This discipline can be situated between computa-

tional intelligence and data mining on one hand, and process modeling and analysis on 

the other hand (VAN DER AALST et al., 2012). 

2.4.1 Fundamentals of Process Mining 

 

Figure 2.3: Process mining types and relationships (VAN DER AALST et al., 2012). 

Figure 2.3 depicts how process mining relates to real world and software systems. 

Real world business processes may be supported or controlled by software systems. If 

these systems are capable to record the history of execution of their supported processes 

it will be possible to do process mining over their event logs. There are three types of 

process mining tasks (VAN DER AALST et al., 2012): discovery, conformance and en-

hancement. The first type is discovery, where an event log is taken and after processing, 

a process model is produced without using any previous information. The second type is 

conformance, where an existing process model can be compared with an event log of the 

same process. Conformance helps checking if reality (event log) conforms to a model and 

vice versa. The third type is enhancement, where an existing process model can be im-

proved by using the information obtained for several real world executions of the pro-

cesses, e.g. bottlenecks can be solved, the mainstream flow can be optimized, and services 

level agreement can be updated. As the interest of this work is on discovery, it is important 

to consider the following definition regarding the process discovery task (VAN DER 

AALST, 2012). A process discovery algorithm is a function that maps an event log L onto 

a process model P such that model is representative for the behavior seen in the event log. 
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There are many process mining techniques and tools, from both academic and 

commercial initiatives. Commercial examples are Fluxicon’s Disco2, Perceptive Soft-

ware3, and Celonis Process Mining4. From academia, most of process mining algorithms 

are implemented as plugins to ProM’s framework. ProM provides an environment spe-

cially designed for developing process mining algorithms, covering all the three types of 

process mining. 

2.4.2 Event Logs 

Many current information systems are capable to log large amounts of events, 

especially due to the development of modern systems called Process-Aware Information 

Systems (PAIS). These kinds of systems are built with the idea of isolating the manage-

ment of processes in a separate component from the remaining system’s technological 

infrastructure. DUMAS et al. (2005) said that pulling away the process logic from appli-

cation programs and capturing this logic in high-level models facilitates redesign and or-

ganic growth. A PAIS can be designed in a way to generate event logs that are well struc-

tured and provide detailed information about processes execution. Besides this, there is 

also a wide range of software that stores this information in unstructured form. In such 

cases, event data exist, but some efforts are needed to extract useful process information, 

before process mining (VAN DER AALST, 2011).  

The basis for process mining is the existence of an event log. Event logs are char-

acterized by a history of events over time, with specific characteristics. Table 2.4 shows 

typical information stored in an event log. From this table, each line represents an event. 

The “Case ID” field groups all events that occurred in the same process instance. There 

exists a unique identifier for an event occurred in a given timestamp, and the name of the 

executed activity is also presented. In addition, the resource information points to the user 

(or user role) who executed the activity, and the additional information (in this example, 

“Costs”) provides more details about the circumstances in which the event was executed. 

 

 

 

                                                 
2 For Disco refer to: http://fluxicon.com/. 
3 For Perceptive Software refer to: https://www.perceptivesoftware.com/products/perceptive-process/pro-

cess-mining.html. 
4 For Celonis Process Mining refer to: http://www.celonis.de. 
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Table 2.4: Event log fragment example (VAN DER AALST, 2011). 

 

As stated before, event logs can be stored in various forms. A standardization in-

itiative has been conducted in order to promote guidelines to develop systems aware of 

the importance of process mining, and then produce event logs with higher quality that 

can foster process mining initiatives and improve its results. An example of this effort is 

the Extensible Event Stream (XES)5, which is an open XML-based standard for event 

logs. There also exists the Business Process Analytics Format (BPAF)6 standard, which 

is another XML-based standard to allow for the easy aggregation of information to the 

process level. However, BPAF does not contain the aggregation structures present in XES 

meta-model (ZUR MUEHLEN et al., 2010). Actually, XES standard is supported by a 

variety of process mining tools used in this work, such as Disco and ProM, so this was 

the standard chosen for storing event logs in this thesis. 

2.4.3 Mining Declarative Process Models 

Most of the process mining algorithms produce traditional imperative process 

models. These techniques are well suited for structured process, where there are not many 

possible paths for process execution. Although some of these techniques can handle event 

logs from flexible or unstructured models, declarative modeling is proposed in order to 

provide a better balance between flexibility and guidance support from such models 

(VAN DER AALST, 2009). Besides doing declarative modeling, the possibility for min-

ing declarative models has also arisen due its applicability on event logs from unstruc-

tured or flexible process models. 

An approach to mine declarative process models is to verify each trace from a log 

with all the possible LTL expressions that represents Declare templates. For each satisfied 

                                                 
5 For XES standard refer to: http://www.xes-standard.org/. 
6 For BPAF standard refer to: http://www.wfmc.org/standards/bpaf. 



30 

 

expression, the respective template is stored as an output of the discovery process 

(MAGGI et al., 2011). The set of discovered Declare templates forms a process model. 

An implementation for declarative process mining is the DeclareMiner (MAGGI et al., 

2011), which is available as a ProM plugin. This plugin offers parameters that can be set 

to discover only the interesting constraints (MAGGI et al., 2012), namely Support and 

Confidence, Interest Factor (BRIN et al., 1997) and Conditional Probability Increment 

Ratio (WU et al, 2004). In this plugin, the Support (Equation 1) of a Declare constraint 

in an event log L is defined as the fraction of process instances in which the constraint C 

is satisfied. The Confidence (Equation 2) of a Declare constraint in an event log L is the 

ratio between the Support of the constraint and the Support of the antecedent part of the 

constraint, which is the part that activates the constraint but not necessarily satisfies it 

completely. For the complete satisfaction of a constraint, the second part, called conse-

quent, also needs to be activated. Confidence measures might be misleading in scenarios 

where the support of either the antecedent or the consequent is equal to 1.0 (MAGGI et 

al., 2011). To deal with such scenarios the Interest Factor provides a stronger dependency 

between the antecedent and the consequent parts as shown in Equation (3). Finally, Equa-

tion 4 presents the conditional-probability increment ratio (CPIR) measure that assesses 

whether two activities a and b are positively or negatively related. 

𝑠𝑢𝑝𝑝(𝐶) =  
𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑑𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠(𝐿, 𝐶)

𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠(𝐿)
                                          (1) 

𝑐𝑜𝑛𝑓(𝐶) =  
𝑠𝑢𝑝𝑝(𝐶)

𝑠𝑢𝑝𝑝(𝑎𝑛𝑡𝑒𝑐𝑒𝑑𝑒𝑛𝑡)
                                                   (2) 

𝐼𝑛𝑡𝑒𝑟𝑒𝑠𝑡𝐹𝑎𝑐𝑡𝑜𝑟(𝐶) =  
𝑠𝑢𝑝𝑝(𝐶)

𝑠𝑢𝑝𝑝(𝑎𝑛𝑡𝑒𝑐𝑒𝑑𝑒𝑛𝑡)𝑠𝑢𝑝𝑝(𝑐𝑜𝑛𝑠𝑒𝑞𝑢𝑒𝑛𝑡)
                (3) 

𝐶𝑃𝐼𝑅(𝐶) =  
𝑠𝑢𝑝𝑝(𝐶)  −  𝑠𝑢𝑝𝑝(𝑎𝑛𝑡𝑒𝑐𝑒𝑑𝑒𝑛𝑡)𝑠𝑢𝑝𝑝(𝑐𝑜𝑛𝑠𝑒𝑞𝑢𝑒𝑛𝑡)

𝑠𝑢𝑝𝑝(𝑎𝑛𝑡𝑒𝑐𝑒𝑑𝑒𝑛𝑡)(1 −  𝑠𝑢𝑝𝑝(𝑐𝑜𝑛𝑠𝑒𝑞𝑢𝑒𝑛𝑡))
              (4) 

 

DI CICCIO et al. (2013) also developed a declarative mining algorithm that uses 

a probabilistic approach to discover Declare constraints, called MINERful++.  

WESTERGAARD et al. (2013) proposed the UnconstrainedMiner algorithm to 

mine declarative models based on discovering regular expressions from event logs. In this 

proposal, each Declare template is translated to a regular expression that can be verified 

against the event log and also presents support and confidence calculations for each con-

straint discovered.  In addition, some reduction techniques are applied to boost algo-
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rithm’s performance, such as symmetry reduction, prefix sharing, parallelization, and su-

per-scalarity. Symmetry reduction aims to discovering only one constraint that present 

any symmetry, which means that swapping some parameters does not change the validity 

of the constraint, such as co-existence(A, B) and co-existence(B, A).  For prefix sharing, 

when a log stems from a single process, the individual traces typically share a lot of char-

acteristics which can be exploited to achieve improved performance. The idea is to or-

ganize the log in a prefix-tree or trie. This way it is possible to replay such a trie on an 

automaton in a single run, allowing to not replaying any shared prefix more than once. 

Parallelization means the possibility to mine constraints in parallel by splitting up the 

check of traces. Finally, super-scalarity allows mining multiple constraints at a time, 

much how like super-scalar processors execute different parts of multiple instructions at 

a time. 

A performance comparison between DeclareMiner, MINERful++ and Uncon-

strainedMiner (WESTERGAARD et al., 2013) showed that UnconstrainedMiner pre-

sented a better performance and is capable of mining all Declare constraint templates. As 

a disadvantage, UnconstrainedMiner produces a raw textual-based result with all possible 

Declare constraints from an event log. This result needs to be filtered, improved and then 

converted to the graphical notation in order to obtain a more useful Declare map. 

2.4.4 Techniques for Declarative Models Improvement 

Some researchers explored techniques to improve declarative models discovery 

that usually results in models with a high quantity of constraints. BOSE et al. (2013) 

proposed a method to correlate process information data with Declare templates to obtain 

models with the most interesting constraints.  

MAGGI et al. (2013) presented a set of techniques to discover and repair models 

to produce fewer but more surprising constraints. The first technique is to prune weaker 

constraints implied by stronger ones. DI CICCIO et al. (2013) pointed that Declare con-

straints can be structured in a hierarchy that shows subsumption relations between con-

straint templates (Figure 2.4). 
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Figure 2.4: The declarative process model's hierarchy of constraints (DI CICCIO et al., 

2013). 

Based on generalization relations from Declare constraint’s hierarchy, MAGGI et 

al. (2013) proposed to remove Declare constraints present in a declare map if there exists 

any declare constraint that subsumes the previous constraints. Figure 2.5 depicts the 

stronger-weaker relations that can be used to remove less interesting constraints. 

 

Figure 2.5: Dominating hierarchy of Declare constraints (MAGGI et al., 2013). 

The second technique is the transitive reduction of Declare Maps. The interplay 

of three or more Declare constraints may imply on redundant constraints. Figure 2.6 

shows an example of transitive reduction on the presence of three co-existence constraints 

connecting three activities. In this case just two constraints are necessary to model the 

desired behavior, thus, one constraint can be removed. Not all constraints can be pruned 

using transitive reduction. The dashed lines shown in Figure 2.5 point where transitive 

reduction can be applied. 
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In addition, a non-exhaustive set of reduction rules is presented that can be used 

on model’s simplification. They also propose techniques for repairing Declare maps, such 

as strengthening constraints or removing constraints that no longer hold when compared 

to an event log, and the use of domain knowledge, e.g. using an ontology, to group activ-

ities based on their functionality. From this grouping, two classes of constraints can be 

distinguished: inter-group and intra-group constraints. Intra-group refers to the class of 

constraints where the activities involved in a constraint all emanate from a single group 

(Figure 2.7a), and inter-group refers to the class of constraints where the activities in-

volved in a constraint belong to two different groups (Figure 2.7b).  

 

Figure 2.6: Transitive reduction for co-existence constraints: the original Declare map (a) 

can be pruned in three different ways using transitive reduction (b, c, and d) (MAGGI et 

al., 2013). 

 

Figure 2.7: Inter- and intra-group constraints (MAGGI et al., 2013). 

2.5 Complexity metrics for declarative process models 

When dealing with conceptual models, the quality of a model may directly impact 

on the results of models usage. MOODY (2005) investigated more than fifty approaches 

that deal with quality of conceptual models. He pointed issues regarding the lack of em-

pirical evaluations and accordance among terms and concepts. From the frameworks 
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tested and studied by MOODY (2005), the proposal from LINDLAND et al. (1994) co-

vers conceptual models in general. The fundamentals of this approach are related to three 

aspects: semantics or the relation between the model and the represented domain; syntac-

tics, which is related to the modeling language and the evaluation of its consistency; and 

pragmatics, which relates the model to users participating on the creation and interpreta-

tion of the model. Thus, the pragmatic aspect goal is related to the comprehension of 

models. In line with this thesis’ research problem, focus is given on improving user’s 

understandability of a declarative model produced by process mining, which is a prag-

matic aspect. In order to measure understandability, it is important to define objective 

criteria. This way, complexity metrics for business process models may be used to quan-

titatively define how easy a model is to be understood and maintained (GRUHN et al., 

2006).  

From software complexity, NAGAPPAN et al. (2006) point that there is no single 

set of complexity metrics that could act as a universally best defect predictor for software 

programs. In the same way, several process metrics can be designed to analyze business 

processes (CARDOSO et al., 2006) from different perspectives. The authors adapted 

some of the most well-known and widely used source code metrics to business processes. 

They also believe that the use of process metrics lies in using relatively simple metrics to 

build tools that will assist process analysts and designer in making design decisions. 

Mechanisms for managing complexity of process models can be defined on two 

different levels: concrete and abstract syntax of a model. The concrete syntax deals with 

visual appearance, including symbols, colors and position, and is referred to as secondary 

notation. Abstract syntax of a process model relates to the formal structure of process 

model elements and their interrelationships (LA ROSA et al., 2011). The authors propose 

patterns to reduce the model complexity on the level of its abstract syntax, where each 

pattern that operates on a process model is related to a desired improvement of a structural 

metric. This work defines specific terms related to process models used in the complexity 

metrics. The term module indicates a process model which is part of a larger business 

process. The term modular level, to denote a hierarchical relation among modules which 

contain or are contained by another module. The term block-structure to denote a part of 

a model where each split element has a corresponding join element of the same type, and 

split-join pairs are properly nested. It is pointed that certain structural metrics can be re-

lated to process model understandability (MENDLING et al., 2007). LA ROSA et al. 
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(2011) discussed the following language independent metrics against the patterns for ab-

stract syntax modifications: 

 module size, the number of nodes in a module; 

 model size, the summed size of all modules in a process model; 

 repository size, the summed size of all models in a process model repository; 

 models, the number of models in a process model repository; 

 depth, the number of modular levels appearing in a process model; 

 diameter, the longest path from a start to an end element in a process model; 

 average gateway degree, the number of nodes a gateway in a specific process 

model is on average connected to; 

 structuredness, the restructuring ratio of the number of nodes in an unstructured 

model to a block-structured variant of it (LAUE et al., 2010); 

 modules overhead, the ratio between modules and model size; 

 fan-in, the average number of references to a module; 

 different modeling concepts, the number of different modeling concepts used in a 

process model. 

With respect to the model characteristics, MENDLING et al. (2007) found that 

model size is of dominant importance on model’s understandability. 

For declarative models, some of the proposed metrics above are not applicable 

due the absence of a graph representation; hence, path related metrics should be discarded. 

In the same way, due the absence of control nodes, gateway related metrics are not suita-

ble for declarative models.  

In addition to the aforementioned complexity metrics, the number of constraints 

in the model may be used as a complexity metric for declarative models, because models 

with many restrictions, even with few activities, are considered hard to understand 

(MAGGI et al., 2012). 

For the purpose of this work, considering the idea to use simple but meaningful 

metrics, the dominance of model size, and the impact of the quantity of constraints on 

declarative model’s understanding, the following metrics will be considered: model size 

(splitted by number of activities and number of constraints), number of different modeling 

concepts, number of groups and constraint/activity ratio. To operationalize these metrics 

they can be defined as follows.  
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Number of Constraints (NC). Let P be a declarative process model, containing a set of 

constraints C  P. The number of constraints is the size of the set C, as Nc = |C|.  

Number of Activities (NA). Let P be a declarative process model, containing a set of 

activities A  P. The number of activities is the size of the set A, as NA = |A|. 

Number of Different Modeling Concepts (ND). Let P be a declarative process model 

and  the set of concepts which describe the elements of a declarative language, D  P 

is a set of different modeling concepts where D . The number of different modeling 

concepts is the size of the set D, as ND = |D|. 

Number of Groups (NG). Let P be a declarative process model, containing a set of groups 

of activities G  P. The number of groups is the size of the set G, as NG = |G|.  

Constraint-Activity Ratio (RC-A). The constraint activity ratio is the number of con-

straints Nc divided by the number of activities NA, defined as RC-A = Nc/ NA. 

2.6 Abstraction and Aggregation on Business Process Models 

Abstraction is seen as an effective approach to represent readable models, show-

ing aggregated activities and hiding irrelevant details (SMIRNOV et al., 2011). Model 

abstraction may be used in diverse situations, such as when there are occurrences of ac-

tivities with similar properties (e.g., roles and data objects) (SMIRNOV et al., 2011), or 

when there are relations between their activity labels that can be identified in a meronymy 

tree (SMIRNOV et al., 2010). 

Adjusting granularity level of a model depends on the stakeholder. Top level man-

agement tends to appreciate coarse-grained process descriptions that allow fast and cor-

rect business decisions. On the other hand, employees who directly execute processes 

value fine-granular specifications. Thus, it might be often the case that a company ends 

up with maintaining several models of the same business process (POLYVYANYY et 

al., 2015). 

While on imperative models every process fragment ranging from a single entry 

and a single exit (SESE) can be grouped as a subprocess (WEBER et al., 2011), on de-

clarative models this structure is not informative enough, because the activities’ sequence 

is not very rigid. Hierarchies can be used to perform information aggregation and to hide 

the details, so a group of activities may form a subprocess that can be represented by a 

complex activity, this way the mental effort to understand the model can be reduced 
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(ZUGAL et al., 2013). Moreover, hierarchical decomposition on imperative process mod-

els is viewed as a structural measure that may impact model understandability (ZUGAL 

et al., 2011), but does not influence semantics. From this point of view, hierarchy in de-

clarative process models may have implications on semantics. For example, consider the 

following constraints in the same declarative map: not succession(A,B) and prece-

dence(A,C), also activities B and C must be grouped and then represented by a complex 

activity D. There is no single constraint template available that can represent at the same 

time that A must not happen after D, and for D to be executed, A must be executed before. 

ZUGAL et al. (2013) state that hierarchy should be handled with care. This is due the 

positive effects of information hiding, i.e., the quantity reduction of activities and con-

straints presented in the model, and increased pattern recognition that promise gains in 

terms of understandability, and the negative effects of the integration of constraints and 

switching attention between sub-processes that may compromise the understandability. 

2.7 Natural Language Processing 

The main goal of Natural Language Processing (NLP) is to reach a higher level of 

natural language comprehension by using computers (KODRATOFF, 1999). It includes 

a wide range of techniques including text string manipulation to automatic document pro-

cessing and linguistic analysis of its elements. 

As this work applies NLP over language provided in text form, some fundamental 

concepts are important to natural language text analysis domain (LEOPOLD, 2013): A 

text Corpora is a corpus with large collection of texts. Corpora can be annotated with 

linguistic knowledge such as part of speech tags or parse trees. This annotation is a valu-

able source of information for grammatical analysis, providing insights about the fre-

quency of words or the likelihood of a particular part of speech sequence.  

Part-of-speech (POS) tagging is the process of assigning a part of speech to each 

word in a given text. Parts of speech are different lexical categories at word level. They 

include nouns (N), verbs (V), adjectives (ADJ), adverbs (ADV), prepositions (PREP), 

and determiners (DET). The input for a POS tagger algorithm is a set of text strings and 

a tag set. The output is a single tag for each word. For example, consider the sentence 

“Process the customer data” (LEOPOLD, 2013). A POS tagger should tag each word 

according to its respective part of speech, resulting in: Process/V the/DET customer/N 

data/N. There exists rule-based taggers based on a large set of manually defined rules to 
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assign tags to words. In addition, there exist stochastic taggers, which use statistical meth-

ods to compute the best POS tag for a given word in a given context. For this, it is neces-

sary to train a parser by using annotated Corpora.  

WordNet7 is a lexical database for the English Language. It organizes nouns, 

verbs, adjectives and adverbs into sets of synonyms, called synsets. The synsets are linked 

via semantic and lexical relationships. Thus, WordNet is able to represent a net of mean-

ingful related words and concepts. 

2.7.1 Semantics 

Linguistics is concerned with the form and structure of language (LEOPOLD, 

2013), and for written languages, it has three main branches: morphology, the study of 

structure of words; syntax: the study of the structural relationships between words; se-

mantics: the study of meaning. As the main goal of this work is to propose groups of 

similar activities based on their meaning, focus will be given on semantics. 

LEOPOLD (2013) said that the meaning of words could be discussed from a re-

lational perspective.  Words can be semantically related to other words in various ways. 

These sense relations are an important concept of lexical semantics and are considered a 

predominant issue in the context of natural language analysis. The most important sense 

relations are (LEOPOLD, 2013): 

 Synonymy: words having the same meanings, e.g. to buy & to purchase; 

 Homonymy: words with multiple unrelated meanings, e.g. to order / application; 

 Polysemy: a word with multiple related meanings, e.g. to acquire / table; 

 Hypernymy: type-of relationship between words. Denotes the super-name of the 

relationship, e.g. vegetable -> carrot; 

 Hyponymy: type-of relationship between words Denotes the sub-name of the re-

lationship, e.g. carrot -> vegetable; 

 Holonymy: part-of relationship between words. Denotes the whole-name of the 

relationship, e.g. hand -> finger; 

 Meronymy: part-of relationship between words. Denotes the part-name of the re-

lationship, e.g. finger -> hand. 

In the context of this work, the sense relations hypernymy and holonymy are es-

pecially useful for finding semantic hierarchies between words. Figure 2.8 illustrates how 

                                                 
7 WordNet is available at http://wordnet.princeton.edu/. 
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Hypernyms provide a more general concept from a group of related concepts, and how 

Holonyms present the whole concept from a group of part concepts. 

 

Figure 2.8: Hypernymy and Holonymy relationships. 

2.7.2 Semantic Similarity Measures 

Measures of semantic similarity based on WordNet have been widely used in Nat-

ural Language Processing. These measures rely on the structure of WordNet to produce 

a numeric score that quantifies the degree to which two concepts are similar. In their 

simplest form, these measures use path length to identify concepts that are physically 

close to each other and therefore considered more similar than concepts that are further 

apart (PEDERSEN, 2010).  

RESNIK (1995) proposed to augment concepts in WordNet with Information 

Content values derived from text corpora. Information Content (IC) is a measure of spec-

ificity for a concept. Higher values are associated with more specific concepts (e.g., pitch 

fork), while those with lower values are more general (e.g., idea), and it is computed 

based on frequency count of concepts in a text corpus. Each occurrence of a more specific 

concept also implies the occurrence of the more general ancestor concepts (PEDERSEN, 

2010). Information Content calculation is presented in Equation 5 and it is defined as the 

negative log of the probability of that concept, based on the observed frequency counts. 

𝐼𝐶(𝑐) =  −𝑙𝑜𝑔𝑃(𝑐)                                                       (5) 

Information Content can only be computed for nouns and verbs in WordNet, since 

these are the only parts of speech where concepts are organized in hierarchies. Since these 

hierarchies are separate, Information Content measures of similarity can only be applied 

to pairs of nouns or pairs of verbs (PEDERSEN, 2010). 

There are many proposals that use the distance between two concepts in a taxon-

omy as basis for similarity. LIN (1998) presented a comparison between the most com-

monly used similarity measures, such as (RESNIK, 1995) and (WU & PALMER, 1994). 

As a result, it was demonstrated that Lin’s definition of similarity was the most similar to 
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human judgments than the other two measures. Lin’s similarity is defined in Equation 6. 

Given two concepts c1 and c2, their similarity is calculated by the division of twice the 

Information Content value of the least common subsumer (LCS) between c1 and c2, by 

the sum of the Information Content of c1 and c2. For example, consider the semantic sim-

ilarity calculus between the concepts cat and dog. From a database with word frequencies, 

such as WordNet, the information content obtained for cat is IC(cat) = 8.63 and for dog 

is IC(dog) = 7.74. The least common subsumer between cat and dog is carnivore, and its 

information content is IC(carnivore)= 7.25. Applying these values on Equation 6, the 

resulting similarity simlin(cat,dog) is 0.89. 

𝑠𝑖𝑚𝑙𝑖𝑛(𝑐1, 𝑐2) =  
2 ∗ 𝐼𝐶(𝐿𝐶𝑆(𝑐1, 𝑐2))

𝐼𝐶(𝑐1) + 𝐼𝐶(𝑐2)
                                         (6) 

2.8 Process Model Matching 

The focus of process model matching is to find similarities on different process 

models. For this thesis, we are interested in measuring the similarity of activities in a 

single process model, and then suggest groups of semantically related activities. Some of 

the presented techniques for process model matching can be applied to identify similari-

ties between labels in a single process model and are considered in the construction of the 

proposal of this work. 

Process model matching refers to the creation of correspondences between activ-

ities on different process models (CAYOGLU et al., 2013). The two major challenges of 

process model matching are textual heterogeneity and differences in model granularity, 

i.e., different abstraction levels between models (WEIDLICH et al., 2013). 

CAYOGLU et al. (2013) presented the results from a process model matching 

contest where two datasets were proposed to test the capabilities of seven different ap-

proaches to match business process models. As a main characteristic, almost all matchers 

use a pairwise comparison at activity level to find similarities, and then use these results 

to calculate a score of similarity between two process models. The evaluated matchers 

consider syntactic, semantic and structural perspectives with different approaches. The 

overall results showed that there is no clear winner against the proposed datasets, because 

they have different characteristics such as, the number of complex correspondences and 

the linguistic consistency. The evaluation considered precision, recall and f-measure as 

metrics for evaluation. Using a gold standard for each dataset, each computed activity 
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match was classified as either true-positive (TP), true-negative (TN), false-positive (FP) 

or false-negative (FN). Based on this classification, precision (TP/(TP+FP)), recall 

(TP/(TP+FN)), and the f-measure, which is the harmonic mean of precision and recall 

(2*precision*recall/(precision+recall)) were calculated. 

When focusing on f-measure, the RefMod-Mine/NSCM (CAYOGLU et al., 2013) 

approach yields the best result for one dataset and bag-of-words similarity 

(KLINKMÜLLER et al., 2013) performed best for the other dataset. 

RefMod-Mine/NSCM proposes an N-Ary Semantic Cluster Matching, which uses 

a semantic similarity measure for pairwise node comparison. Their similarity measure is 

based on matching equal stems (PORTER, 1997) of words divided by the sum of all 

words in a pair of nodes/labels. This approach also considers the presence of antonyms 

and the occurrence of negation words, but do not consider any other complex semantic 

relations. A user-defined threshold is used to filter low score matching. 

KLINKMÜLLER et al. (2013) proposed the bag-of-words similarity for model 

matching. The approach consist on a pairwise comparison between activities and calcu-

late a similarity score for a pair, based on the sum of the maximum similarity of each 

word in an activity label to all other words in its counterparty label, divided by sum of all 

words in the activity pair. Different from the previous approach, the similarity measure 

between words may be any available, such as Levenshtein distance (LEVENSHTEIN, 

1966), Lin’s metric (LIN, 1998) and stem-based metrics like RefMod-Mine/NSCM’s ap-

proach. This approach also proposes a second technique called label pruning that attempts 

to better capture activity labels with a strong difference in specificity, such as matching 

“rank application on scale of 1 to 10” to “rank case”. The idea is to remove a number of 

words from the longest label, based on some criteria, like lowest similarity scores or even 

document frequency. Again, a user defined threshold is used to prune low scoring 

matches. 

2.9 Final Remarks 

Business Process Management allows organization to be aware of how work is 

performed and where they have opportunities for improvement. Business process models 

play an important role on this scenario, they are important means of communication 

among the stakeholders and may be also used to build systems to support the execution 

of work modelled in a process. Due the advancement on computers technology and the 
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spreading on BPM thinking, more and more systems are used to support business pro-

cesses today. In these cases, the information about process execution stored in software 

systems is very valuable, as it can be used for the analysis of the performed work, the 

conformance of the activities being executed and also improvement opportunities. All 

these analysis may be operationalized via Process Mining, which allows the discovery, 

conformance and enhancement of business process models by analyzing data produced 

from the execution of business processes. A process mining initiative may present some 

difficulties when dealing with unstructured process. Even using a declarative approach to 

deal with flexibility and a loose structure on process models, process mining may produce 

models that are too complex due the presence of a high quantity of constraints. Business 

process abstraction must be a way to deal with this complexity. Moreover, declarative 

models may not rely solely on structural information to be used for abstraction purposes, 

however, the analysis of its semantics may help on the creation of abstractions. 

Several approaches apply Natural Language Processing on Business Process 

Models with different goals. Examples are construction of models, design support, con-

struction of formal specifications, quality assurance, generation of text from process mod-

els and information elicitation (LEOPOLD, 2013). The present work proposes to use NLP 

to create abstractions and aggregations by using hypernymy and holonymy semantic re-

lations, in order to reduce the complexity of Declarative process models. The proposed 

approach can be situated between construction of models and information elicitation cat-

egories.  

The fundamentals on NLP techniques and the use of WordNet, due the availability 

of a semantic taxonomy for the semantic similarity measures, are very important to reach 

the goal to group process activities with common semantics. In addition, a comprehensive 

study on the specific characteristics of hierarchies and subprocesses for declarative mod-

els is needed in order to build a solution that fits the proposed complexity reduction.  
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Chapter 3 - Related Work  

This chapter focuses on presenting works that proposed to describe hierarchies 

on imperative and declarative models, and the existing research that applies these hier-

archy concepts on process mining scenarios.  

3.1 Hierarchies on Business Process Models 

LI et al. (2011) proposed an approach to create different model abstraction levels 

to reduce complexity and improve understandability of imperative process models. They 

proposed a two-phase approach where the first step is the preprocessing of an event log 

in order to create a mapping between the original alphabet of the event log and an abstract 

alphabet, which enables mining models with abstractions. The proposed mapping is based 

either on domain knowledge defined by the user or on common sequential execution pat-

terns found in event logs. After discovering the patterns or using domain knowledge, the 

event log is transformed by replacing the identified patterns by an abstract activity. In 

addition, the low-level abstracted part is maintained in a sub-log for further detailing. The 

second step is the process discovery over the abstracted event log with Fuzzy Miner 

(GÜNTHER et al., 2007) algorithm. FuzzyMiner was adapted to work with maps in order 

to enable zooming in the abstract activities to view the fine granular part of the model. 

For declarative models, however, the single identification of sequential patterns is not 

enough to infer groups of activities that constitute a subprocess, because activities’ se-

quence is not rigid for all types of constraints. 

BOSE et al. (2012) enhanced LI et al. (2011) proposal and defined a taxonomy 

for abstractions that considers loops and conserved regions relative to sequences in event 

log traces. They presented the graphical representation of abstract activities and the im-

plementation on a new enhanced version of Fuzzy Miner’s plugin. The authors considered 

the discovery of tandem arrays (loop patterns) and maximal repeats (common subse-

quence of activities within a process instance or across process instances) to identify com-

mon execution patterns that can be turned into abstractions. Their approach is compliant 

with imperative models; for declarative models, however, structural information based on 

control flow sequences is not sufficient for creating abstractions and in some real life 
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situations, there is no domain knowledge available. In a different approach, the proposal 

of this thesis is to use semantic information available in process activity labels to find 

similarities and then create abstractions for declarative models. 

BAIER et al. (2013) presented a method to construct abstraction layers in process 

models by matching events and activities. The main goal of their method is to abstract an 

event log to the same abstraction level needed by the business using domain knowledge 

from existing process documentation. Their approach searches for potential relations be-

tween events and activities by comparing all business objects in two ways: a simple string 

match and the decomposition of the business objects into their smallest semantic compo-

nents that are then compared each other. After mapping event classes to activity classes, 

they use a clustering schema to group activities based on timestamp information to cal-

culate minimal distances between activities in a trace. This schema maps event instances 

surrounded by an event context to a high-level activity The approach assumes the availa-

bility of process and activities descriptions to match event class names from an event log,  

also, their semantic comparison do not explore word sense relations between words. Dif-

ferently, this thesis proposal does not demand any external context beyond the activity 

labels and it uses word sense relations, such as hypernyms and holonyms, to find similar-

ities between words. 

ESHUIS et al. (2008) proposed the construction of process views. A process view, 

for example, may hide details of an internal process that are secret of irrelevant for the 

consumer. Their approach focuses on structured processes and allows different views of 

the process from the consumer and provider. To create aggregation it requires block-

structure in order to maintain correctness. This approach creates correct abstractions, but 

as unstructured process models often do not present block-structure, it is not possible to 

build reliable abstractions from unstructured processes. For a declarative perspective, this 

approach is not adequate because there are constraints that connect activities, which can-

not be identified by looking to a minimal temporal distance, such as co-existence and 

response constraints. 

3.1.1 Hierarchies on Declarative Process Models 

ZUGAL et al. (2013) examined the effects of hierarchy on declarative models and 

analyzed the pre-conditions to propose the definition of subprocesses on declarative mod-

els. As a result, they confirmed that the structural grouping of activities is inadequate and, 
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for declarative models, it has to be done considering a common objective among activi-

ties. In addition, subprocess activities should be executed in isolation from their top-level 

process, that is, constraints on top level must not influence the subprocess execution and 

vice-versa. For example, consider the process in Figure 3.1a: the complex activity B can 

occur any time, due to response relation. However if A is executed, B will eventually 

occur after A, but activities C and D (in  Figure 3.1b) will only be executed during the 

instantiation of B, that is, the execution of A does not trigger C or D until B is initiated. 

ZUGAL et al. (2013) said that the definition of hierarchies on declarative models 

has to be performed in specific situations, since the transformation of hierarchical struc-

tures back to flat models is not always possible without changing the process structure 

and, possibly, its semantics. However, they also affirmed that this possible loss can be 

compensated by the expressiveness enhancement of a model. 

 

 Figure 3.1: Example process with a complex activity B and its contained activities 

DEBOIS et al. (2014) proposed a method for declarative modeling with subpro-

cesses on DCR Graphs language. They defined a subprocess as a complex activity in the 

model which has underlying behavior instantiated when the subprocess is started. This 

approach allows single-instance or multi-instances of a subprocess, meaning that in-

stances of the same subprocess can occur concurrently. In addition, an extension called 

Hi-DCR graph is proposed. This variant is equipped with a partitioning of its events into 

interface events and local events. It allows events to spawn subprocesses in a conservative 

way, where each instantiated subprocess is represented separately and the interfaces offer 

synchronization points among the subprocesses instances and the main process model. 

This approach does not try to aggregate constraints when representing subprocess, which 

should imply on semantic losses; instead, all relations between nested activities to other 

activities beyond the subprocess are made explicit. No constraint aggregation or sub-

sumption is made, thus the original semantics of the low level model is preserved. Our 

approach follows the work of DEBOIS et al. (2014) with regard to creating abstract views 

from discovered Declare Models without causing semantic losses on the discovered pro-

cesses models.  

MAGGI et al. (2013) proposed the use of domain knowledge to model inter-group 

and intra-group constraints in declarative process model, after process mining. This paper 
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do not directly propose the creation of abstractions, but emphasizes the improvement on 

understandability when separating constraint that are present inside groups of activities 

and other that relates different groups. Their approach assumes previous domain 

knowledge information to pre-define the groups. Our proposal extends this approach by 

automatically inferring groups from activity labels information and then creating a more 

abstract explicit representation of a declarative model. 

MAGGI et al. (2014) proposed a technique for discovering a hybrid process model 

from an event log. A hybrid process model contains both imperative and declarative frag-

ments structured in a hierarchy. Their discovery technique is sensitive to the nature of the 

traces and distinguishes structured and unstructured events. They conduct a context anal-

ysis considering predecessors and successors events. Procedural process mining is ap-

plied for the structured events, and declarative mining is applied for the unstructured. 

After mining these fragments, which should correspond to subprocesses, they are all ab-

stracted in the main log and these steps can run iteratively again in order to build a hybrid 

hierarchy of activities. In order to decide which technique will be used to discover the 

main process, a string-edit distance (RISTAD et al., 1998) measure is applied over the 

abstracted event log. If the similarity among the traces is above 50% then procedural 

discovery is made, otherwise, declarative mining is used. Their approach focus on a novel 

approach to discover hybrid models, and to build hierarchies where the sequence of events 

is the main concern for splitting declarative and imperative fragments. No semantics are 

considered in their approach, and it will be an interesting opportunity to investigate if the 

declarative fragments discovered has some kind of a common objective among its 

grouped activities, as stated by ZUGAL et al., (2013). 

3.2 Final Remarks 

Regarding hierarchies, none of the above mentioned approaches addresses ab-

straction techniques on declarative process models to reduce their complexity. There ex-

ists several works dealing with hierarchies on imperative business process models, where 

structural and control flow aspects can be used to define subprocesses and abstract details. 

But, for declarative models, where block-structure is absent and flexibility is present, dif-

ferent techniques need to be employed to create abstractions. Existing works explain how 

to model hierarchy and subprocesses in declarative processes models, but fewer works 
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applied these concepts on process mining scenarios, which sometimes result in very com-

plex models and need some kind of automatic support for creating more abstract views 

that helps on model’s analysis. None of them focused on the semantics presented in ac-

tivity labels to infer groups of similar activities. Although previous works did not com-

pletely solve the problem of the high complexity of automatically discovered declarative 

process models, they are very important knowledge sources for giving ideas on building 

the solution proposal presented in this thesis. 
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Chapter 4 - A Semantic Criterion to Create Abstractions for 

Business Process Activity Labels  

This chapter presents the core contribution of this work, which is a method to 

create abstractions on business process models based on a semantic criterion, detailing 

all steps needed to reach this goal. In addition, a discussion about semantic similarity 

methods is made to allow comparison among the techniques and then discuss its ad-

vantages and disadvantages. Finally, to better illustrate the proposal, a complete exam-

ple execution of the method is presented using an artificial event log. 

4.1 Method Overview 

The proposed method has the main goal to group similar business process activity 

labels to allow the creation of abstractions, represented by complex activities, which in-

tends to create a more abstract process view from a declarative map resulting from a pro-

cess mining step. Figure 4.1 shows an overview of the method.  

The first step is the extraction of an Activity Labels List from an event log. Then 

a pairwise calculation of semantic similarity between each pair of activity labels is per-

formed. The second step uses the semantic similarity values between each pair of activity 

labels to build a graph that allows grouping related activity labels defined by a cluster 

strategy based on maximal cliques on the graph. The output of this step is a set of groups 

of related activity labels. The third step consumes this last output, and also requires a 

declarative process model produced from the application of process mining techniques 

over the previously used event log. In this step, the activities on the declarative model are 

aggregated into complex activities, and the constraints between the aggregating elements 

are handled in order to create a more abstract view from the initial declarative model.  

In the next sections the method is detailed and a step-by-step example is also pre-

sented. 
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Figure 4.1: Overview of the proposed method. 

4.2 Calculate Similarity between Label Pairs 

Inspired by the semantic approach of LEOPOLD et al. (2014) to name imperative 

process models and fragments, the proposed approach applies natural language pro-

cessing to identify common objectives between activity labels, and then abstracts these 

activities creating hierarchies.  More specifically, this work preprocesses an event log in 

which hierarchy (hypernyms) and inclusion (holonyms) semantic relations are used to 

group related activities as subprocesses. To create groups, the approach builds a graph 

with activity labels as nodes, and the similarity value between a pair of activity labels as 

edges. Algorithm 1 (Figure 4.3) calculates the semantic similarity between all pairs of 

activities, and is explained as follows. 

For this method, Wordnet8 was chosen to search for semantic relations. 

LEOPOLD et al. (2014) used a hypernymy and holonymy search scheme to abstract con-

cepts from activity labels to suggest names for an entire process model or fragment. The 

proposed approach of this thesis aims to search for common objectives that can be used 

to gather activities in a subprocess by looking for common hypernyms and holonyms 

from each word belonging to a pair of activity labels (Step 3-7). As said by (PEDERSEN, 

2010) it was considered only nouns and verbs from the labels, because these are the only 

parts of speech where concepts are organized in hierarchies in WordNet. Each word be-

longing to a pair of activity labels, being a noun or a verb, is called an origin word. To 

find the more abstract concept between two words, two approaches are proposed. The 

first searches for the most abstract concept for each origin word by traversing Wordnet’s 

                                                 
8 WordNet is available at http://wordnet.princeton.edu/. 
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hierarchical tree looking for hypernyms and holonyms relationships. A distance limit 

from the origin word should be defined to disconsider far concepts that may be too vague 

in Wordnet’s tree. This leads to situations where two concepts that are in very different 

abstraction levels may not match a common concept. Nevertheless, choosing a broader 

limit would imply matching concepts that are close to the Wordnet’s root (such as “en-

tity”), even though there is not any interesting semantic relation. Figure 4.2a shows an 

example diagram of this search strategy for an activity label. Figure 4.2b presents an ex-

ample result for the identified holonyms and hypernyms for the noun “method” with 

search limited by 2 levels from the origin word. 

 

Figure 4.2: a) Identification of Hypernyms and Holonyms from words of an activity la-

bel. b) Example of identified holonyms and hypernyms for the noun “method”. 

For each possible pair of activity labels from the input list, the pairs of words of 

the same type (nouns to nouns, and verbs to verbs) are checked for common hypernyms 

or holonyms (if no common abstract concept is found, the matching between these two 

words is null) (Steps 12 and 17). When more than one abstract concept is found for the 

same pair of words, the most adequate abstract concept is selected by applying Word 

Sense Disambiguation (WSD) techniques, taking the set of all activity labels from the 

process as context information. The technique for WSD is WordNet::SenseRe-

late::WordToSet  (MICHELIZZI et al., 2005), which aims to find the WordNet concept 

of a target word that is most related to a given set of words  (Steps 13 and 18). 
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Figure 4.3: Algorithm to calculate semantic similarity between activity labels 

(RICHETTI et al, 2014a). 

The second proposed approach is to look for the most similar parent concept (be-

ing a hypernymy or holonymy) between two words disregarding the number of levels on 

the semantic tree needed to find the more abstract concept indicated by the Common 

Parent Index (CPI). The Common Parent Index is the index of the node in the relationship 

that represents this divergence point. For example, when finding a hypernymy relation-

ship between “dog” and “cat”, the relationship is dogcaninecarnivore; catfe-

linecarnivore, so "carnivore" is the word of the common parent index, and its index is 

2 (FAN et al., 2010). As this approach tends to find concepts that can be too vague, a 

label pruning technique (KLINKMÜLLER et al., 2013) was used to balance labels with 

different sizes considering only a set of words with highest similarity.  

Apart from the technique used, both approaches can be used as input for the next 

step, which calculates the semantic similarity between activity labels.  

   Algorithm 1: Calculate semantic similarity between activity labels 

      Input: List of unique activity labels A, number of levels to search in Wordnet’s hypernymy and 

holonymy tree k 

     Output: Set of activity pairs with their respective average similarity measure R 
  

1 Initialize R with  

2 foreach activity label a in A do 

3  Apply part-of-speech tagging to identify all verbs V and all nouns N in a  

4  foreach verb v in V do 

5   Identify all hypernyms for v until reach the kth level starting from v 

6  foreach noun n in N do 

7  

 

 

 

Identify all hypernyms and holonyms for n until reach the kth level starting  

from n 

8 Generate a set Pa with pairs of activities pa(activity label a1, activity label a2) from the 

combination   𝐴
2
  

9 foreach activity label pair pa in Pa do 

10  

 

Generate a set V1,2 with pairs of verbs pv(v1,v2) from the combination of each verb  

v1 in V1 from a1 and each verb v2 in V2 from a2  

11  foreach pair pv in V1,2 do      

12   Match all common hypernyms Hv between v1 and v2 

13  

 

 

 

Invoke WordNet::SenseRelate::WordToSet  algorithm to define the most  

adequate hypernymy hv from Hv, using A as context 

14   Calculate Lin’s semantic relatedness metric between v1 and hv and v2 and hv 

15  

 

Generate a set N1,2 with pairs of nouns pn(n1,n2) from the combination of each noun n1 in 

N1 from a1 and each noun n2 in N2 from a2  

16  foreach pair pn in N1,2 do      

17   Match all common hypernyms and holonyms Hn between n1 and n2 

18  

 

 

 

Invoke WordNet::SenseRelate::WordToSet  algorithm to define the most  

adequate hypernymy or holonymy hn from Hn, using A as context 

19   Calculate Lin’s semantic relatedness metric between n1 and hn and n2 and hn 

20  

 

Calculate average semantic relatedness value s considering all nouns in N1, N2 and  

verbs in V1, V2 to their most adequate hypernymy or holonymy 

21  Add pa and its s value to R 

22 return R 
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We also keep track of how strong a word is semantically related to its selected 

hypernymy or holonymy (Steps, 14 and 19). Semantic relatedness metrics can measure 

the degree of relationship between words, and the Lin metric was chosen because its re-

sults are similar to human judgment (LIN, 1998).  

To operationalize the semantic similarity calculus between two activity labels, the 

following aspects should be considered. Given a process model P, we define an activity 

label a  A, where A is the set of all activity labels from P. Moreover, a function: a  

W defines a set of words w  W assigned to an activity label a. For an activity label pair 

(a1, a2), a function : (a1, a2)  D defines a set of word pairs (w1,  w2) D that are formed 

by combining each word from (a1) with each word from (a2), considering only noun-

to-noun and verb-to-verb pairs (RICHETTI et al., 2014a). A function : (w1, w2)  h 

defines the most similar hypernymy or holonymy h for both words, using any of the two 

previously presented approaches. Then, the semantic similarity between two activity la-

bels a1 and a2 is calculated by summing the similarity values between each word w to its 

most similar hypernymy or holonymy h (defined by ) in a word pair and dividing this 

sum by two times the number of word pairs from D, as in Equation 7 (Step 20). Then the 

activity label pair and its similarity value is stored in a set (Step 21) and returned as output 

(Step 22).  

sim(𝑎1, 𝑎2) =
∑ [𝑠𝑖𝑚𝐿𝑖𝑛 𝑤1,(𝑤1, 𝑤2) + 𝑠𝑖𝑚𝐿𝑖𝑛 𝑤2,(𝑤1, 𝑤2) ](𝑤1,𝑤2)∈𝐷

2 × |𝐷|
                    (7) 

As an example of the semantic similarity between activity labels, consider the 

following activity labels: “Receive Order” and “Pay Bill”. In this case there are two word 

pairs: “Receive, Pay” for the verbs, and “Order, Bill” for the nouns. Considering that the 

most similar hypernymy/holonymy for the verb’s pair is “Get” and for the noun’s pair is 

“Legal document”, the similarity calculation between these two activity labels is given 

by: 

𝑠𝑖𝑚𝐿𝑖𝑛(𝑅𝑒𝑐𝑒𝑖𝑣𝑒, 𝐺𝑒𝑡) =  1.00     

𝑠𝑖𝑚𝐿𝑖𝑛(𝑃𝑎𝑦, 𝐺𝑒𝑡) =  0.00          

𝑠𝑖𝑚𝐿𝑖𝑛(𝑂𝑟𝑑𝑒𝑟, 𝐿𝑒𝑔𝑎𝑙 𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡) =  0.79   

𝑠𝑖𝑚𝐿𝑖𝑛(𝐵𝑖𝑙𝑙, 𝐿𝑒𝑔𝑎𝑙 𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡) =  0.83 

|𝐷| = 2 

sim(𝑅𝑒𝑐𝑒𝑖𝑣𝑒 𝑂𝑟𝑑𝑒𝑟, 𝑃𝑎𝑦 𝐵𝑖𝑙𝑙) =
[1.00 + 0.00] + [0.79 + 0.83]

2 × 2
  =   0.65   
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4.3 Activity Labels Grouping 

This step groups activities into subprocesses, as illustrated in Algorithm 2 (Figure 

4.4). It starts taking as input the output from Algorithm 1, the activity labels list and a 

user-defined minimum similarity value that is used to prune all pairs of activity labels 

with a similarity below this value (Step 2). Then, a list of pairs of activity labels that were 

not pruned is produced. This list contains candidate activities to form groups, and the 

activity label pairs are used to build an undirected weighted graph (Step 3), where each 

vertex relates to an activity label and the weighted edges represent the similarity value 

between two activity labels. The next step is to define how activities are grouped into a 

subprocess.  

The grouping strategy finds maximal cliques using a graph representation (Step 

5). Cliques are non-extendable groups such that each pair of nodes within a group has a 

relationship (BRON et al., 1973), i.e., a clique is a fully connected subgraph within a 

graph. For each clique, all its edges are summed (Step 7) and the clique with the highest 

sum is stored in a separate list (Steps 8-9), and its nodes are removed from the graph (Step 

10). The algorithm then looks for the next clique with the highest sum in the graph, until 

there are no more edges in it. Figure 4.5 illustrates an example of our proposed grouping 

strategy.  

From the example in Figure 4.2a, each node represents an activity label, while 

each edge represents the similarity between two activity labels. In Figure 4.2b, groups are 

formed by activities that are directly related to all other activities in a group, or a clique. 

From Figure 4.5c, a score representing the sum of edges from each group is calculated. 

The group with the highest score ({A,C,E}) is selected as a subprocess and removed from 

the graph. The group formed by the remaining nodes ({B,D}), which is also a clique, is 

selected as another subprocess (Figure 4.5d). The output from this phase is a set of activity 

label groups (Step 11), that can be used to create abstractions using the visualization pro-

posal presented in section 4.6. If no groups suggestions are found, the original declarative 

process model will remain unchanged. 
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Figure 4.4: Algorithm to group semantic related activity labels (RICHETTI et al, 2014a). 

 

 

Figure 4.5: Proposed grouping strategy based o graph cliques. 

4.4 Algorithms implementation 

The proposed method takes as input a list of activity labels, and outputs a list of 

groups of activities. A flow diagram in Figure 4.6 shows all method’s steps implemented 

in a prototypical software. The prototype for executing Algorithms 1 and 2 was imple-

mented in Java language. Auxiliary Python NLTK3.09  scripts were used for the part-of-

speech tagging step. PERL Word-Net:SenseRelate::WordToSet10  scripts were used to 

get the most adequate sense from a list of words to be disambiguated in a given context 

and Wordnet:Similarity11  scripts provided the semantic similarity relatedness calculus. 

                                                 
9 The toolkit is available at http://www.nltk.org/. 
10 Refer to http://search.cpan.org/~tpederse/WordNet-SenseRelate-WordToSet-0.04/. 
11 Refer to http://search.cpan.org/~tpederse/WordNet-Similarity-2.05/. 

   Algorithm 2: Group semantic related activity labels 

      Input: List of unique activity labels A, Set of activity pairs with their respective average similarity 

measure R, minimum similarity value v 

     Output: Set of activity labels groups S 
  

1 Initialize S with  

2 Remove all activity pairs from R with average similarity measure below v 

3 Create a undirected weighted graph G(V,E) where each vertex v is an activity label from A and 

each edge e relates to a pair from R whose weight is the average similarity measure of the pair 

4 while G has edges do 

5  Generate all possible vertex groups P where in a group each vertex relates to each other 

6  foreach group p in P do 

7   Sum the weight of all edges of p 

8  Identify the vertex group h with the highest weight sum 

9  Add h to S 

10  Remove all vertex in h from G 

11 return S 
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Figure 4.6: Process implementation for obtaining the groups list. 

The POS tagger is configured as an Unigram tagger trained with Penn Corpus12. 

The WordNet::SenseRelate13  algorithm is used to get de most adequate sense from a list 

of words to be disambiguated and a given context. For the creation of groups after calcu-

lating the similarity between activity labels, the Bron-Kerbosch (BRON et al., 1973) al-

gorithm was applied, which efficiently identifies cliques on graphs. 

The similarity calculus variant, using the Common Parent Index, was imple-

mented in Java using the Extend Java Wordnet Library (extJWNL)14. Considering the 

process from Figure 4.6, this variant perform the same activities and substitutes PERL’s 

lane. 

4.5 Evaluating the similarity measures for labels grouping 

As stated in Section 4.1, many similarity measures can be applied in combination 

to the proposed grouping strategy. To look for the best similarity measure, four different 

techniques were analyzed: 

                                                 
12 The corpus is available at: http://www.cis.upenn.edu/~treebank/. 
13 For Wordnet:SenseRelate  refer to http://search.cpan.org/~tpederse/WordNet-SenseRelate-WordToSet-

0.04/. 
14 For extJWNL refer to http://extjwnl.sourceforge.net/. 
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 hyho: hypernymy/holonymy match with a user defined search distance level, pro-

posed in this work;  

 hyhoCPIv2: hypernymy/holonymy match by looking for the common parent in-

dex, proposed in this work;  

 BOWMax: an adaptation of the “Bag of words with label pruning” semantic sim-

ilarity approach, which was defined in (KLINKMÜLLER, et al., 2013) for process 

model matching and modified to perform the label pruning by maintaining the 

words with the highest similarities; 

 BOW2p: an adaptation of the “Bag of words with label pruning” semantic simi-

larity approach, which was defined in (KLINKMÜLLER, et al., 2013) for process 

model matching and modified to perform the label pruning by considering their 

frequency on the process model.  

To allow a quantitative evaluation, the following subprocess metrics defined by 

REIJERS et al.  (2010) were adopted: precision, recall, f-measure, undershoot and over-

shoot. Precision (Equation 8) and recall (Equation 9) are common measures from the lit-

erature used to compare automated information retrieval to human information retrieval. 

In this case, the “retrieved information” to be compared is the groups of activities. This 

comparison, however, was performed as defined by REIJERS et al. (2010), who consid-

ered too strict to just compare exact matches of automated groups to human modeled 

groups. They argued that an automatically retrieved group with missing nodes when com-

pared to its human-made counterpart is not a completely missed match, since in a real 

scenario the process analyst could easily investigate the subprocess and complete it. 

Therefore, they defined precision and recall on the activity level within groups or subpro-

cesses, rather than in terms of exact matched groups. The author presents an example to 

justify this decision: suppose that the set of nodes {'receive request', 'fill out request', 

'complete request', 'accept request', ‘file request'} constitutes a subprocess. If the set of 

nodes {'receive request', 'fill out request', 'complete request', 'accept request'} is returned 

automatically, then this is not an exact match, but it does provide useful information to 

the process analyst that is determining the subprocesses.  

In addition to precision and recall, two metrics were proposed by REIJERS et al. 

(2010): overshoot (Equation 10) and undershoot (Equation 11). Overshoot is the fraction 

of found nodes on automated modeled groups that do not belong to any of the human 

modeled groups. For this two measures the lower values, the better. Undershoot is the 
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fraction of nodes that do belong to human modeled groups but were not found in any 

automated modeled group.  

Precision, recall, overshoot and undershoot are calculated according to equations 

8, 9, 10 and 11, respectively, where pM is a manually determined group, PM is the set of 

manually determined groups, pA is an automatically determined group, and PA is the set 

of automatically determined groups. The function match(pM) returns the most relevant 

automatically determined match for each manually determined group, or empty if no such 

match exist (REIJERS et al., 2010). 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
∑ |𝑝𝑀 ∩𝑚𝑎𝑡𝑐ℎ(𝑝𝑀)|𝑝𝑀∈𝒫ℳ

∑ |𝑝𝐴|𝑝𝐴∈𝒫𝒜

                                (8) 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
∑ |𝑝𝑀 ∩𝑚𝑎𝑡𝑐ℎ(𝑝𝑀)|𝑃𝑝𝑀∈𝒫ℳ

∑ |𝑝𝑀|𝑝𝑀∈𝒫ℳ

                                 (9) 

𝑂𝑣𝑒𝑟𝑠ℎ𝑜𝑜𝑡 =  
∑ |𝑚𝑎𝑡𝑐ℎ(𝑝𝑀) − 𝑝𝑀|𝑝𝑀∈𝒫ℳ

∑ |𝑝𝐴|𝑝𝐴∈𝒫𝒜

                              (10) 

𝑈𝑛𝑑𝑒𝑟𝑠ℎ𝑜𝑜𝑡 =  
∑ |𝑝𝑀 −  𝑚𝑎𝑡𝑐ℎ(𝑝𝑀)|𝑝𝑀∈𝒫ℳ

∑ |𝑝𝑀|𝑝𝑀∈𝒫ℳ

                            (11) 

Also, the harmonic mean between recall and precision, called F-measure (Equa-

tion 12), was used as the main metric for starting the analysis: 

𝐹𝑚𝑒𝑎𝑠𝑢𝑟𝑒 =  
2 ∙ 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∙ 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
                                     (12) 

To illustrate the calculation of subprocess metrics, consider an example situation 

where the algorithm suggest a single group with the activities “A, C and D”. In addition, 

there exists a manually defined group “A, B and C” to be used as a reference. By the 

comparison between the automatically and manually defined groups and by using the 

equations 8-12 it is possible to determine the subprocess metrics, as showed in Table 4.1. 

Table 4.1: Example calculation of subprocess metrics for a single activity group. 

 

A B C

A C D |p A | 3

PRECISION 0,67 X X |p M | 3

RECALL 0,67 X X match(p M ) 2

OVERSHOOT 0,33 X |p M match(p M ) | 2

UNDERSHOOT 0,33 X |p M-match(p M ) | 1

F-MEASURE 0,67 |match(p M )- p M | 1

MANUAL GROUPING

AUTOMATIC GROUPING

Auxiliary Values
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These subprocess quality metrics were implemented in Java to allow batch calcu-

lations varying the minimum similarity value, so it was possible to evaluate the best sce-

nario for each technique. 

The groups outputted by the proposed algorithms were compared to reference 

models with subprocesses (groups) built by analysts and available in the literature, 

namely the process “Writing a Scientific Paper” found in (ZUGAL  et al., 2013), the 

processes “Bug Fixing Process of a Mobile App Company”, “How to Prepare Oneself 

and Materials for Teaching Pupils”, “Tasks at an Electronic Engineering Company” and 

“Looking for an Apartment and Buying It” found in (HAISJACKL et al, 2013), and the 

process “Application Dreyers Fond for ACM”15. Group hierarchies were previously man-

ually defined for each of those models, and defined as reference standards to be compared 

to the subprocesses automatically defined using our approach. The process characteristics 

are shown in Table 4.1. 

Table 4.2: Standard Process Models characteristics 

 

The evaluation consisted on running each algorithm for each process model, with 

24 combinations. In addition, the minimum similarity value was varied from 0.1 to 1.0 

(with steps of 0.1) to tune the best similarity threshold scenario. This implied in 240 exe-

cutions of the similarity calculus. The best result for each process model is shown in Table 

4.2. 

Table 4.3: Methods with best f-measure (f1) for each analyzed process model. 

 

 

                                                 
15 Model available at http://dcrgraphs.net. 

process method threshold precision recall f1 overshoot undershoot

MaintenanceManagement hyhoCPIv2 0.1 0.95 0.95 0.95 1.00 1.00

GiveLessons BOW2p 0.7 1.00 0.67 0.80 0.50 0.33

ConstructionAndMoving hyhoCPIv2 0.1 0.65 0.94 0.77 1.00 1.00

SoftwareBugCorrection hyho 0.4 1.00 0.60 0.75 0.33 0.20

SubmitPaper BOW2p 0.1 0.50 0.86 0.63 1.00 1.00

Appl icationDreyersFond hyhoCPIv2 0.1 0.37 0.94 0.53 1.00 1.00
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Considering that the reference models have different characteristics, such as  nam-

ing conventions, words quantity and manual grouping strategy of the modelers, some 

methods perform better than others depending on the scenario. The methods HyHoCPIv2 

(3 in 6), BOW2p (2 in 6) and hyho (1 in 6) obtained the best f-measure score for at least 

one of the processes considered in this experiment. The BOWMax was the only method 

that did not outperform any other candidate for the analyzed scenarios. Even though 

showing the best results on f-measure, the methods HyHoCPIv2 and BOW2p in most of 

the cases they presented higher values on undershoot and overshoot, indicating that these 

methods produced groups that are less complete (higher undershoot) or with more activ-

ities than expected (higher overshoot) when compared to the reference standards. In prac-

tice, this results mean that the user may have to remove or include many activities in the 

resulting groups when applying these two methods, in order to make the groups correct.  

The hyho method presented the lowest undershoot and overshoot values among 

all methods, in 5 out of the 6 scenarios. This result means hyho was able to produce groups 

with less missing or exceeding activities in comparison to other methods, although its 

maximum f-measure was not the highest one for the analyzed models. 

From Figure 4.7, the best results for each method are presented to each selected 

process models. From these graphs it is possible to analyze the four subprocess metrics 

(precision, recall, overshoot and undershoot), one in each axis. In visual terms, the ideal 

geometric result would be a region delimited by the upper right quarter of the graph. 
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Figure 4.7: Method’s best results for each process model. 

From Figure 4.7, it is possible to see that BOW2p, BOWMAx and hyhoCPIv2 

reaches undershoot and overshoot values near the edges of the graph, while hyho tends 

to be near the center in most of the cases. Moreover, hyho presented lower precision and 

recall values in comparison to other methods. This confirms that BOW2p, BOWMAx and 

hyhoCPIv2 tends to create larger groups (high recall), but with some activities that do not 

belong to the standard group (high overshoot). They also produce groups that are not 

present on the standards (high undershoot). hyho, on the other hand, tends to suggest 

smaller groups (lower recall). It was not possible to define a pattern for the behavior of 

the precision metric due its different variations among the methods and process models. 

An example of this behavior can be seen in the process “Submit Paper” shown in Figure 

4.8. 
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Figure 4.8: Groups comparison for the “Submit Paper” process model. 

Table 4.4: Method’s best results for the “Submit Paper” process model. 

 

Figure 4.8 shows how the method hyho was penalized on precision and recall be-

cause it suggested a group that has five activities that did not belong to any reference 

group, although it produced a second group with all the activities from the reference group 

1 with just one additional activity. The second group helps keeping low overshoot and 

undershoot.  

Table 4.3 resumes the overall behavior of each method on the “Submit Paper” 

process model. Methods BOW2p and hyhoCPIv2 obtained reduced precision because 

Standard subprocesses: 

1) [Read reviews for revising paper, Write response letter, Work on revision] 

2) [Select Venue, Language editing, Format to instructions, Execute submission] 

  

BOW2p = BOWMax (Both methods presented the same results for this model) 

First group: 

[Write response letter, Format to instructions, Get revise and resubmit, Get rejection, Complete 

writing paper, Language editing, Prepare and submit final, Read reviews for revising paper, Execute 

submission, Work on revision] 

Second group: 

[Get acceptance, Select Venue] 

  

hyho 

First group: 

[Get acceptance, Get revise and resubmit, Get rejection, Complete writing paper, Prepare and 

submit final, Execute submission] 

Second group: 

[Write response letter, Language editing, Read reviews for revising paper, Work on revision] 

  

hyhoCPIv2 

First group: 

[Get acceptance, Write response letter, Get rejection, Complete writing paper, Prepare and submit 

final, Read reviews for revising paper, Work on revision, Execute submission] 

Second group: 

 

[Format to instructions, Language editing] 

  

Legend: 

Activities from standard subprocess 1 

Activities from standard subprocess 2 

Activities that do not belong to any standard subprocess 

process method precision recall f1 overshoot undershoot

BOW2p 0,50 0,86 0,63 1,00 1,00

hyho 0,40 0,57 0,47 0,40 0,57

hyhoCPIv2 0,50 0,71 0,59 0,70 1,00

SubmitPaper
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they produced groups with too many activities (some of them were undesired), while re-

call was improved because these large groups also contained activities from the standard 

groups. Overshoot and undershoot where higher due the presence of superfluous and 

missing activities (marked as red in Figure 4.8) in its individual groups. The hyho method 

presented the lowest f-measure, and as seen previously obtained the lowest results for 

overshoot and undershoot. 

 

Figure 4.9: Average group size comparison. 

Figure 4.9 compares the average of the group sizes, where it is possible to verify 

that the hyho method presented lower values in four out of the six process models. The 

other two cases are process models with few activities in standard groups: “Software Bug 

Correction” (2.5 activities per group in average) and “Give Lessons” (3.0 activities per 

group in average). hyho was the method with the most similar average group size when 

compared to the standard models. 

In order to select a method for a case study considering all four subprocess met-

rics, BOWMax, BOW2p and hyhoCPIv2 were compared to hyho, which demonstrated a 

regular pattern with lower undershoot and overshoot values. Although hyho has not been 

the winner on precision and recall in all cases, it is interesting to know at least if its f-

measure results are comparable to other methods when we limit these methods to the 

same values of undershoot and overshoot presented in the best results of the hyho method. 

In a nutshell, knowing that hyho is stable for undershoot and overshoot, the overall idea 

is to evaluate whether hyho presents an f-measure comparable to the remaining methods. 

If so, we consider hyho to be a suitable candidate method for our case study with real life 

data. 
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Figure 4.10 presents a diamond graph with the average values per method, con-

sidering the best f-measure for each method in the six selected process models, but limited 

by the undershoot and overshoot values from the best f-measure results from hyho 

method. It is worthy noticing that precision and recall from hyho are comparable (and 

even higher than, in some cases) to other methods. 

From this analysis, the hyho method for the case study, since it returned groups 

with less missing or superfluous activities, with a precision and recall comparable to the 

other methods.  

 

Figure 4.10: Average Results per method, limited by hyho’s overshoot and undershoot. 

4.6 Method application on Declarative Models visualization 

Once defined the method for creating groups of activities, the second step is the 

creation of abstractions over a declarative model. The approach from (DEBOIS et al, 

2014) that presented a technique for hierarchical declarative modeling for DCR Graphs, 

and the map metaphors were considered. The proposal is to add a more abstract represen-

tational layer over a low-level declarative map. It is intended to reduce diagram complex-

ity presented to users, and to not harass their cognitive limits, which means the number 

of diagram elements that can be comprehended at a time, limited by working-memory 

capacity. When this is exceeded, a state of cognitive overload ensues and comprehension 

degrades rapidly (MILLER, 1956).  
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To create abstraction layers for visualization, it is proposed to connect complex 

activities (resulting from the previous grouping strategy) to other complex or single ac-

tivities, by substituting all constraints between them by a single arc. To enforce  aggrega-

tion behavior, the arc has variable thickness proportional to the number of constraints that 

were aggregated (Figure 4.11). From statechart semantics (HAREL et al., 1987) it is 

stated that if the actual conditions and/or the topology of the arrows are too complex 

connecting states and superstates (more abstract states), one can omit the details from the 

chart and use a simple incomplete form of Fig. 4.12c. Remembering that the user will 

have to supply the full details separately, and a computerized support system for 

statecharts would be able to show 4.12c but would enrich it to 4.12a or 4.12b upon re-

quest. This concept will be applied on declarative maps for creating a simpler more ab-

stract view of a process, letting a software system provide detailing when needed.  

 

Figure 4.11: use of thicker arcs to denote more grouped constraints between activities. 

The proposed representation is also in accordance with inter-group and intra-

group classification of constraints (MAGGI et al, 2013). Intra-group refers to the class of 

constraints where the activities involved in a constraint all emanate from a single group, 

and inter-group refers to the class of constraints where the activities involved in a con-

straint belong to two different groups (Figure 4.13). 

An important reason to create a process view as a layer over the low-level model 

instead of treating it as a subprocess embedded into the process model is the possibility 

of semantic losses caused by the hierarchy (ZUGAL et al, 2013). This occurs because 

some combinations of inter-group constraints cannot be represented by any other single 

constraint; also, different existence constraints over activities inside a group may be con-

flicting when trying to use just one constraint to represent them in their complex activity. 

For example, consider the situation when an activity A has an existence constraint an 

activity B has an absence constraint. In this situation, no single constraint template avail-

able can represent both behaviors. Other examples are presented in Figure 4.14: there is 

no single constraint that is equivalent to the combination of a chain response and a not 

co-existence constraints or a response and not succession from an activity to two distinct 

other activities that belongs to the same group.  
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Figure 4.12: Statechart semantics for abstract states (HAREL et al., 1987). 

 

Figure 4.13: Inter- and intra-group constraints (MAGGI et al., 2013). 

 

Figure 4.14: Activities that do not have a single equivalent aggregating constraint. 

4.7 Method Execution Example on an Artificial Event Log 

To show how the method works, this section presents an example process model, 

and all steps needed to generate the declarative map with abstraction, starting from pre-

processing an event log. The main objective of this example is to observe how a declara-

tive process model turns less complex after the use of abstractions suggested by the pre-

sented method. The declarative process model “How to prepare oneself and materials for 

teaching pupils” was chosen from literature (HAISJACKL et al., 2013) to perform this 

example. For this, there was created a single group of activities in order to focus on the 

illustration of the method application.  
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The process was modeled and simulated in CPNTools16, generating 5,000 traces 

of an artificial event log that was used as input to DeclareMiner’s plugin from ProM to 

discover a Declarative model. The plugin parameters were set to “Min. Support” = 50 and 

“alpha” = 50, which are the default parameters of DeclareMiner, and no additional filters 

were applied after the discovery. Figure 4.15 shows the discovered Declare Map. 

After discovering the declarative model for the original event log, the grouping 

method was applied. First, each unique activity label within the event log was extracted 

and stored in a list, as in Figure 4.16, which shows a fragment, with three cases, from an 

example event log. 

 

Figure 4.15: Discovered Declare map from the example event log. 

 

Figure 4.16: Obtaining the activities list from a process event log. 

                                                 
16 The tool is available at http://cpntools.org/.   
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Each label was then annotated with its respective part-of-speech tag. Hypernyms 

and holonyms were located for each word (noun or verb) from the list (Figure 4.17a). 

Figure 4.17b shows a list of WordNet hypernyms and holonyms synsets for the “teaching” 

word. A distance limit of 2 was set from the origin word. The resulting hypernyms and 

holonyms found were stored for each word in the label list. 

 

Figure 4.17: Annotated labels (a) and hypernyms and holonyms for the “teaching” word 

(b). 

A combination of pairs of all activity labels is then generated. For each activity 

pair, all noun-to-noun or verb-to-verb word pairs were considered and a match of their 

common hypernyms or holonyms was performed. Note that more than one concept may 

match.  In order to select only the best match between the words, Word Sense Disambig-

uation was applied to verify which one is more appropriated in the context of the business 

process. The best match can be obtained (Figure 4.18) by directly running the algorithm 

WordNet::SenseRelate::WordToSet (MICHELIZZI et al., 2005) taking as input parame-

ters the set of common hypernyms/holonyms (make, change, inform) and the process 

context consisting in a set of all words from the entire activity label’s list.  

 

Figure 4.18: Hypernyms and holonyms matching for word pairs in an activity label pair. 
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Afterwards, the semantic similarity from a word and its best match is calculated 

using Lin’s similarity metric. For calculating the similarity between a pair of activity la-

bels, Equation 7 was applied. 

 

Figure 4.19: Similarity calculus for an activity labels pair. 

After calculating the similarity for all words, the average semantic relatedness 

value for the activity pair is calculated (Figure 4.19). The activity pair and its average 

semantic relatedness value are stored in a set. With this set (Figure 4.20a), an undirected 

weighted graph is built to help define the groups of similar activities (Figure 4.20b). This 

is done by analyzing all the possible fully connected subgraphs, or cliques, and summing 

the edges of each clique (Figure 4.21).  

 

Figure 4.20: Activity pairs and their similarity values, using a (a) textual representation 

and a (b) graph representation. 

Iteratively, the subgraph with the highest value is stored in a list and removed from 

the original graph, until there are no more edges on the graph. Each subgraph stored in 

the list is a complex activity candidate (Figure 4.22).  For this example, it finished with a 

single group with two activities (“Give lessons” and “Prepare a lesson in detail”), due the 

user decision to use a minimum similarity value of 0.5 between activities. 
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Figure 4.21: Edge sum for each clique on the graph. 

 

Figure 4.22: Selected group using a minimum similarity value of 0.5. 

With the previously discovered declarative model, the abstraction method was ap-

plied based on the group discovered. We substitute “Give lessons” and “Prepare a lesson 

in detail” activities by a new complex activity that was manually labeled as “Prepare and 

Give lessons”. In addition, all constraints that connected these two activities to other ac-

tivities of the models were removed by the aggregating arcs with variable thickness (for 

example, the constrains not succession(prepare teaching sequence, give lessons) and not 

chain succession(give lessons, prepare teaching sequence) were encapsulated into an 

unique arc between prepare teaching sequence and prepare and give lessons). Figure 

4.23 presents the resulting Declare map with abstractions. Numbers over the arcs repre-

sent the relation constraint quantities that were abstracted. 
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Figure 4.23: Declare map with abstractions. 

In a visual inspection, a process analyst can see that the model with abstractions 

is more readable, due the lower quantity of activities and constraints it presents in com-

parison to the model without abstractions. It is possible to view the inter-group constraints 

by selecting an aggregating arc (Figure 4.24). Intra-group constraints within a complex 

activity are visualized by selecting a complex activity (Figure 4.25). 

 

 

Figure 4.24: Details of inter-group constraints between activity “Decide on teaching 

method” and complex activity “Prepare and give lessons”. 
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Figure 4.25: Details of intra-group constraints within “Prepare and give lessons” com-

plex activity. 

4.8 Final Remarks 

The manual creation of groups may consider other aspects rather than semantics, 

e.g., the sequence flow, process data and user roles, and also tacit knowledge. As the 

processes are declarative, the structural approach is not recommended, since it is based 

on control flow sequences (Zugal et al., 2013). In addition, the proposed approach as-

sumes that process data and user information are not available. This way, this proposal 

creates groups by looking just for the activity labels, in a minimum information scenario 

that sometimes is present on real life situations. The proposed approach helps users by 

producing simpler models with abstractions, where each group relates activities by their 

semantics. If additional process information is available, such as temporal aspects, user 

roles and process data, it may be possible to extend the method to also consider these 

aspects in order to improve the suggestion of groups of activities. 

The natural language processing phase may introduce some errors, such as pos-

mistagging a verb as a noun and vice-versa. In addition, not always an activity name is 

written as a complete sentence, what make this phase more challenging. In scenarios 

where local context is poor or vague, word sense disambiguation may also lead to incor-

rect suggestions for the best common hypernymy or holonymy. All these problems de-

pend on the labeling quality, which should be an important concern for business analysts 

when they design process models (LEOPOLD, 2013). 
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For the semantic similarity measures between activity labels, the labeling quality 

is a major factor of success. When working with process models with poor labeling, e.g., 

single wording, absence of an action or a business object, it is expected that the results 

will decay. To avoid this situation, it is recommended to follow process modeling guide-

lines (LEOPOLD, 2013) to improve the quality and consistency of process models. 

The findings show that the minimum value for the semantic similarity between 

activities of the best groups falls in the range [0.1, 0.7], considering the six analyzed 

models. It is possible to say that the similarity values are not higher because this would 

mean that activities are nearly equal, what is expected to not be frequent within a single 

model. Regarding the subprocess metrics applied on the analysis, instead of using the 

diamond graph analysis, it will be interesting to develop a single metric capable of gath-

ering all aspects that influence on the quality of subprocesses, i.e., the precision, recall, 

undershoot and overshoot. Similar to f-measure, which summarizes precision and recall, 

a new subprocess metric should also consider the effects of undershoot and overshoot in 

a single measure, what could turn the analysis of automatically generated subprocesses 

easier. 

About the group formation, manual grouping usually considers more information 

beyond the semantics, even the personal experience and judgment of the modeler counts 

when he or she decides which activities should be grouped. However, this proposed ap-

proach intends to help domain specialists or beginner practitioners to have a better under-

standing on declarative process models, suggesting possible groups that make the models 

less complex and easy to understand. When there is no previous knowledge available 

about the model (a situation that may happen on process mining scenarios), this approach 

produces interesting views about the process behavior that may be useful for analysis and 

further improvement of business processes. 
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Chapter 5 - Case Study 

This chapter explains the results obtained by the application of the proposed 

method on a real life dataset. The main goal is to create groups of activities that can be 

used to build an abstraction layer over an automatically discovered declarative map.  

5.1 Case Study Setup 

  The case study was planned to execute and evaluate the steps of the pro-

posed method in a real life setting. It consists in executing the proposed algorithms to 

create groups of activities using an event log from the execution of a real world process. 

The execution was followed by a two-phase evaluation. The first phase conducted a do-

main expert’s evaluation of the usefulness of the groups suggested by the activity group-

ing technique. After discovering a declarative map using the same event log and applying 

the visualization techniques from Section 4.6 to create an abstraction layer, the second 

phase of the evaluation compares the original discovered declare map against its repre-

sentation with abstractions, by using complexity metrics. This last evaluation aims to 

quantitatively assess if the solution proposal is in accordance with the research hypothe-

sis. It is “IF semantics is used to find abstraction and aggregation relations between 

activity labels in a declarative model THEN it will be possible to generate groups of ac-

tivity labels, with useful meanings for domain stakeholders, enabling the creation of ab-

stractions over declarative process models in order to produce process views with re-

duced complexity”. 

5.1.1 Event log characterization 

Declarative models are particularly effective for some non-conventional kinds of 

processes, which involves the production of valuable but intangible products, such as 

knowledge (DI CICCIO et al, 2013). This type of processes is flexible, dynamic and sub-

ject to change, and frequently referred to as knowledge-intensive processes, or KIPs 

(DAVENPORT, 2005).  

In order to evaluate the previous proposed method in a real life environment, an 

event log with the aforementioned characteristics was selected from the Business Process 
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Intelligence Challenge 2014 description (VAN DONGEN, 2014). This data set contains 

information about the execution of processes that implements ITIL in a Dutch bank, from 

where it was selected a particular file containing records related to Information and Com-

munications Technology (ICT) incident activities’ lifecycle. 

From the data model of this process, it is possible to observe the minimum attrib-

utes required for process mining (VAN DER AALST, 2011). Table 5.1 presents this map-

ping, with the minimum required attributes written in bold font.  

The “Incident Activity” event log contains information about the ICT incidents’ 

lifecycle: from opening an incident after user interaction, passing through diverse possible 

actions to solve the problem depending on the nature of the incident, until it is closed. 

Table 5.1: Event log data model’s mapping to process mining attributes. 

 

Disco17 tool was used to collect some event log statistics, by importing the 

comma-separated text file with incident activities’ data. Table 5.2 shows the overall in-

formation about this event log. There are 46.606 cases, and 21.756 different case variants, 

what points to a process model with high variability, indeed an interesting candidate for 

Declarative modeling. In order to confirm the inappropriateness of an imperative ap-

proach for this type of process, a process Map was generated by Disco, showing all ac-

tivities and only 30% of the paths. Figure 5.1 shows this imperative map, showing how 

difficult it is to understand the relations among the activities, due the high quantity of 

paths. Disco was also used to convert the comma-separated text file to the XES format to 

be used on process mining. 

                                                 
17 For Disco tool refer to http://www.fluxicon.com. 
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Table 5.2: Overall statistics from Incident Activity event log. 

 

 

Figure 5.1: Imperative Map generated by Disco from the BPIC 2014 ICT incident activ-

ities’ lifecycle dataset, showing all activities and just 30% of the paths. 

5.1.2 Process Mining Configuration and Running 

For generating a declarative model, Declare language was chosen because it is the 

only which have available mining algorithms in the literature. Since this event log has 

more than 46.000 cases and ProM’s DeclareMiner plugin is known as the slowest avail-

able (WESTERGAARD et al., 2013), it was discarded. MINERFul++ (DI CICCIO et al., 

2013) cannot tackle complex constraints. Therefore, UnconstrainedMiner was chosen for 

process discovery. It offers both good performance and the possibility to discover all De-

clare constraint templates. Figure 5.2 shows an example screen of the Uncon-

strainedMiner plugin in ProM’s environment.  

For the first time running, all Declare constraint templates where selected, and 

four computing threads were set to improve speed. All these steps were executed in an 

Intel Core i5 64 Bits CPU, with 2GB RAM computer. 

Unconstrained Miner discovers all possible constraints from an event log, result-

ing in a large list of constraints that needs to be further filtered. A fragment from its output 

is shown in Table 5.3. From this table, it is possible to see the constraint templates and its 

parameters, the positive, negative and dependent support, from where it is possible to 

calculate the frequency based support and confidence of each constraint. 

Information Value

Events 466.665

Cases 46.606

Activities 39

Case Variants 21.756
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Figure 5.2: UnconstrainedMiner plugin example screen. 

Table 5.3: Example output from UnconstrainedMiner. 

 

Thus, after the discovery, it is necessary to filter the plugin’s output in order to 

obtain meaningful information. In addition, there is no single correct model on such pro-

cess mining initiatives where stakeholders expect that valuable insights will emerge by 

analyzing event data. The adequacy of a discovered model will depend on the parameters 

used and on the judgment of the process analyst (VAN DER AALST, 2011). Thus, this 

step consisted on tuning a set of parameters to obtain a Declare map with the goal to 

represent the most frequent and confident constraints. We have tested scenarios with a 

constraint support from 10% to 50%, constraint confidence from 10% to 80%, and activ-

ity frequency from 0% to 100% and selected a set of parameters that fulfills this goal. The 

selected parameters are: constraint support higher than 20%, constraint confidence higher 

than 50% and activity frequency higher than 1%. This setting can be justified due the high 

number of different cases, where few activities have a high frequency rate (Table 5.4), 

implying on their constraints to also have limited support and confidence due the high 

size of the event log. When testing with higher parameters, the number of discovered 

constraint parameters positive negative dependent confidence support

alternate precedence [[Assignment], [Caused By CI]] 34159 0 27079 0.7927 0.581

not chain succession [[Assignment], [Caused By CI]] 27508 0 18110 0.6584 0.3886

succession [[Assignment], [Caused By CI]] 45319 0 26152 0.5771 0.5611

not chain succession [[Assignment], [Closed]] 38438 0 35670 0.928 0.7654

alternate succession [[Assignment], [Closed]] 46387 0 23845 0.514 0.5116
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activities and constraints was severely reduced, implying on not capturing potential im-

portant behavior.  

Due to the size of the event log, a high quantity of choice and exclusive choice 

constraints were discovered that are not useful in practice, such as choice (Open, Closed), 

which means that the user need to choose between opening or closing an incident that are 

mandatory activities with frequency above 99% over the cases. So, these two types of 

constraints were not considered on the resulting Declare Map. Due to the inability of 

Unconstrained Miner to consider known techniques to improve Declare Maps, the result-

ing Declare model was post processed using two improvement techniques (MAGGI et 

al., 2013): weaker constraints removal and transitive reduction. From 105 constraints 

from the raw discovery, the post processing ended with 59 constraints. This way, it was 

possible to generate a simpler model in comparison to the raw set of constraints discov-

ered by UnconstrainedMiner. The Declare Map without abstractions is presented in the 

results (Section 5.2.2), where it was compared to another Declare Map with abstractions 

built through the algorithms proposed in Chapter 4. 

5.2 Proposed Method Execution 

The activity labels from the “Incident Activity” event log were extracted and 

stored in a plain text file. With this activity list, Algorithm 1 (configured with hyho sim-

ilarity) calculated the semantic similarity between the selected activity labels. The output 

was a set of pairs of activities with their respective semantic similarity value, which were 

used to run Algorithm 2, which in turn, generated groups’ suggestions. The minimum 

semantic similarity value to limit group generation was set to 0.3. For the selection of this 

parameter, there were tested different values, ranging from 0.1 to 1.0, in steps of 0.1. As 

the choice for a particular set of groups is a user decision, and as a single group set was 

needed to perform the experiment, the experiment designer made a choice for the 0.3 

value, which should be evaluated by domain specialists, in order to confirm its usefulness. 

As a partial step, Figure 5.3 shows the resulting graph used to find cliques and then pro-

pose groups. Due the high quantity of edges on the graph, it was difficult to manually find 

and sum the edges of each clique. Algorithm 2 helped automating this task. Then, the 

following groups were proposed:  

 Group 1: Vendor Reference, Vendor Reference Change, Communication with 

vendor, Pending vendor; 
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 Group 2: Reassignment, Assignment; 

 Group 3: Mail to Customer, Communication with customer; 

 Group 4: Quality Indicator Fixed, Quality Indicator, Quality Indicator Set; 

 Group 5: Service Change, Status Change, Contact Change, Notify By Change, 

Impact Change. 

Since only activities with frequency higher than one percent were considered, only 

25 (out of 39) activities from the entire event log appeared in the produced Declarative 

Model. Table 5.4 shows the frequency distribution of each selected activity. 

 

Figure 5.3: Resulting graph using a 0.3 minimum semantic similarity value between ac-

tivities. 

5.2.1 Evaluation of the suggested groups by Specialists 

Since the groups are a result of a user decision on defining a minimum semantic 

similarity value, it was important to evaluate if the suggested groups are really meaning-

ful. Therefore, an online survey18 was developed. The survey was targeted to domain 

specialists, in order to gather their opinion about the suggested groups . This way, profes-

sionals with experience on Information Technology Service Management (ITSM) were 

asked to participate on this evaluation by answering the questions proposed, as detailed 

in the next Section. 

5.2.1.1 Survey design 

The design of the online survey starts with a welcome page with information about 

its main goal, followed by instructions for completing the evaluation, a contextualization 

of the problem and the dataset used, and also information about the evaluation criteria of 

                                                 
18 The evaluation survey is available at: http://goo.gl/vAv56U. 
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the suggested groups. These criteria are: a) if a suggested group contains activities with a 

common goal, b) if there is any activity to be included in a group that was not automati-

cally included and c) if there is any activity belonging to a group that should be removed 

as it is not related to other activities in the same group. In addition, a qualification form 

is presented to verify the user experience on BPM, ITIL and ITSM. 

 

Table 5.4: List of activities with case frequency (“relativeCase” field) above 1%. 

 

The evaluation consists on presenting all 39 activities from the Incident Activity 

dataset to the user, and highlighting a group suggested by the proposed method. Figure 

5.4 shows an example of a group presentation for the specialist’s evaluation. At this point, 

the participant is asked to confirm if the highlighted activities have a common objective 

and if they can be nested in a group. In addition, the user may add missing activities or 

remove undesired activities from the group. This step is repeated for all five suggested 

groups for this dataset. 

activity total case relativeCase

Open 46597 46585 99,95%

Closed 50135 46157 99,04%

Assignment 88491 38668 82,97%

Caused By CI 34378 34159 73,29%

Status Change 50904 30412 65,25%

Operator Update 56286 21329 45,76%

Reassignment 51958 18652 40,02%

Update 35954 14690 31,52%

Quality Indicator Fixed 7791 7056 15,14%

Communication with customer 6148 4184 8,98%

External Vendor Assignment 4353 3890 8,35%

Description Update 4500 3852 8,27%

Mail to Customer 3788 3642 7,81%

Pending vendor 4338 3169 6,80%

Quality Indicator 2465 2404 5,16%

Update from customer 3906 2395 5,14%

Reopen 2428 2121 4,55%

Quality Indicator Set 1956 1896 4,07%

Resolved 1625 1616 3,47%

Urgency Change 1317 1196 2,57%

Impact Change 1283 1171 2,51%

Communication with vendor 1777 1089 2,34%

Vendor Reference 941 936 2,01%

Analysis/Research 981 681 1,46%

External update 1099 541 1,16%



80 

 

Also, some manually created groups with the remaining activities were introduced 

to verify if the users are able to perceive any difference between the automated sugges-

tions and manually created ones. 

After evaluating the groups, the user is asked to inform if he or she would suggest 

any different group that was not previously presented. Finally, the users were asked to 

point which activity labels presented might have produced any comprehension problem. 

This last question is important to verify to what extent the labeling quality may impact 

the analysis of the groups. 

 

Figure 5.4: Example of a group to be evaluated by a specialist. 

Once the survey was closed, it was analyzed how much agreement among the 

respondents was achieved for each activity presented in the suggested groups. 

5.2.1.2 Participant’s Profile 

The survey was answered by eight professionals. Figure 5.5 presents user’s profile 

on interest topics for this evaluation. Y-axis represents the number of participants and x-

axis the experience level. The experience level starts from 1 (lowest) to 5 (highest). Re-

garding BPM (a), all users reported medium to high experience on the topic (values 

among 3 to 5). For ITSM (b) just one user reported a low-to-medium experience, although 

the remaining users fell in between 4-5 score. For ITIL, that is a complimentary topic 

related to ITSM, a single user reported low-to-medium experience, another with medium 

experience (3-score) and the six remaining participants pointed a medium-to-high (4-

score) experience. As these scores are self-evaluations from the users, they are subjected 
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to personal judgments. As there is not a large quantity of users with low scores, we did 

not prune the answers for the user reporting low-to-regular (2-score) knowledge on ITSM 

and ITIL. 

 

Figure 5.5: User’s profile on interest topics for the survey. 

5.2.1.3 Survey Results 

For each of the five suggested groups, the survey participants were asked to con-

firm if the activity suggestions are meaningful to the domain. In addition, they were mo-

tivated to remove undesired activities that were proposed or including new activities in a 

group (from the 39 activities of the dataset) that were not considered by the automatic 

method. Finally, all results were consolidated for each group, and the frequency of each 

user confirmation was calculated in order to assess how many times the proposed activi-

ties were selected by the survey participants. Table 5.5 shows the results for each auto-

matically proposed groups. For improved readability, activities that were not selected and 

do not belong to any group were omitted from the tables presented in Table 5.5. Activities 

highlighted in green are the automatic suggestions. All other activities are selections made 

by the participants. The “Hits” column points to the number of times an activity was 

selected and the “%” is the relative frequency of the selection considering eight evalua-

tions. 

Considering the five proposed groups, all suggested activities (green highlighted) 

presented a relative selection frequency above 88%, except for the “Vendor Reference 

Change” activity on Group 1, which was agreed by six users (75%). In addition, for the 

activities included by the participants, no more than two participants agreed on the inclu-

sion, except for the “Update from customer” activity on Group 3 that was added by three 

users. 



82 

 

Table 5.5: User’s activities selection on automatically proposed groups. 

 

Since 24 activities were not automatically assigned to any group, the activity list 

was manually inspected in order to suggest possible groups that were not considered by 

the automatic approach. The goal was to verify if the participants perceive any difference 

between an automatic or manual suggestion. Table 5.6 shows the results for the manually 

proposed groups. For both groups (a) and (b), it can be noticed that, again, there was a 

high amount of agreement on the suggested activities, above 75%, and no more than two 

participants agree with an inclusion of a new activity in each group. This may indicate 

that the automatic suggestions may be equivalent to manually created suggestions. 

Activity Hits % Activity Hits %

alert stage 1 1 13% Assignment 8 100%

Communication with vendor 7 88% Closed 1 13%

Dial-in 1 13% External Vendor Assignment 2 25%

External Vendor Assignment 2 25% External Vendor Reassignment 2 25%

External Vendor Reassignment 2 25% Open 1 13%

Pending vendor 7 88% Reassignment 8 100%

Vendor Reference 7 88% Reopen 1 13%

Vendor Reference Change 6 75% Status Change 1 13%

Activity Hits % Activity Hits %

Callback Request 1 13% Quality Indicator 8 100%

Closed 1 13% Quality Indicator Fixed 8 100%

Communication with customer 8 100% Quality Indicator Set 8 100%

Mail to Customer 8 100%

Update from customer 3 38%

e)

Group 5 Hits %

Affected CI Change 1 13%

alert stage 1 1 13%

Closed 1 13%

Contact Change 8 100%

External update 1 13%

Impact Change 8 100%

Notify By Change 7 88%

Operator Update 2 25%

Service Change 8 100%

Status Change 8 100%

Update 1 13%

Urgency Change 2 25%

Vendor Reference Change 1 13%

a) b)

c) d)

Group 1 Group 2

Group 3 Group 4
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From the open question about the inclusion of new groups that were not previously 

proposed (automatic or manual), only two participants made suggestions. One participant 

suggested an “Incident Handling” group with the activities “Analysis/Research” and “In-

cident Reproduction”; and the other user made two suggestions: a “Cause analysis/re-

search” group with “Analysis/Research” and “Incident Reproduction” activities, and an 

“Update follow up” group with “Description Update, Operator Update, Update from Cus-

tomer” activities. These suggestions were not mentioned by any other participants. 

About the possible problems on the comprehension of activity labels, Table 5.7 

shows the activities were users pointed some difficulties on understanding. 

Table 5.6: User’s activities selection on manually proposed groups. 

 

Table 5.7: Activity labels pointed as hard to understand by the participants. 

 

 

Regarding labeling quality, seven activities were marked by users as hard to un-

derstand. The activity "alert stage 1" was the most pointed (Five times checked). Two 

users commented: "Is there any other alert stage?" and "Why alert stage 1 if there is no 2 

or 3?". The activity “OO Response” was the second with most comprehension difficulties 

b)

Manual Group 1

Activity Hits % Activity Hits %

Closed 1 13% Analysis/Research 2 25%

External update 7 88% Assignment 1 13%

External Vendor Assignment 8 100% Callback Request 1 13%

External Vendor Reassignment 8 100% Closed 2 25%

Reassignment 1 13% External Vendor Assignment 1 13%

Update 6 75% Problem Closure 8 100%

Problem Workaround 8 100%

Quality Indicator 1 13%

Reopen 1 13%

Resolved 1 13%

Status Change 2 25%

Update from customer 6 75%

Manual Group 2

a)

Activity Hits %

alert stage 1 5 63%

OO Response 3 38%

Affected CI Change 2 25%

Caused By CI 2 25%

Dial-in 1 13%

Pending vendor 1 13%

Referred 1 13%
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with three indications (38%). The remaining five activities were mentioned by less than 

25% of the participants. Except from "Pending vendor" that is included in Group 1, all 

other activities do not belong to any suggested group. This may suggest that, in this case 

study the poor labeling quality of these activity labels did not impact on the suggestions 

for groups that were automatically made. Considering the frequency of appearance in the 

event log only activities “Caused by CI” and “Pending Vendor” occur more than one 

percent, and should appear on the further resulting Declare Map. This may point to a need 

to refactor the activity labels on the original system in order to make clear the actions and 

business objects in a business process activity label. 

Although the method may present problems when dealing with labeling styles and 

the presence of incomplete sentences that are characteristics of an activity labels in a pro-

cess model (Leopold, 2013), the result of the survey showed that most of the participants 

agreed with the suggestions . Even when compared to manual suggestions, the results 

were similar. Thus, it was possible to conclude that the automatic suggestions are accepta-

ble for this case study.  

5.2.2 Case Study Results 

Once the usefulness of the automatically proposed groups, considering its limita-

tions, was confirmed by domain specialists, it was possible to generate a new Declare 

Map with abstractions by using the representational techniques presented in previous 

Chapter. Figure 5.6 shows the original Declare Map without abstractions and, for com-

parison, Figure 5.7 shows the resulting Declare Map with abstractions. By a visual in-

spection, model from Figure 5.7 has fewer elements to be analyzed, tending to be easier 

to understand. 
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Figure 5.6: Declare Map without abstractions. 

 

Figure 5.7: Declare map with abstractions. 
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From Figure 5.7, it is important to note that the aggregating arc that connects an 

abstract group to another activity has variable thickness that depends on the number of 

constraints that were abstracted. The number over the arc also indicates the number of 

constraints abstracted. As this representation adds a more abstract layer over the model, 

its original semantics is preserved. If the user wants, he or she may drill down the ab-

stracted constraints. Figure 5.8 presents an example of this detailing. The aggregating arcs 

that contain multiple constraints also represent inter-groups constraints. 

 

Figure 5.8: Details of the abstracted constraints between the complex activity "Assign-

ment and Reassignment" and the activity "Caused By CI", showing inter-group con-

straints.  

If a user wants to detail the activities belonging to a group, he or she can view 

them, as well as the constraints within the group, also called intra-group constraints. An 

example is shown in Figure 5.9. 
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Figure 5.9: Details of the abstracted activities that belong to the "Assignment and Reas-

signment" complex activity. 

5.3 Result Analysis 

Process model’s complexity metrics are useful to perform a quantitative compar-

ison between two process models. For this analysis, complexity metrics (Number of Con-

straints, Number of Activities, Number of Different Modeling Concepts, Number of 

Groups and Constraint-Activity Ratio) that are applicable to declarative models, pre-

sented in Section 2.4, were selected in order to compare a Declare map without abstrac-

tions to the same model with abstractions.  

The results from Table 5.8 showed that a complexity reduction was reached by 

using abstractions, denoted by the lower number of activities and constraints on the model 

with abstractions. In addition, the number of different constrains was increased by one 

because there was the introduction of the thickness variable arc. Also, the number of 

groups trivially grew due the groups proposed. The user should be aware of the risk of 

fragmentation (ZUGAL et al., 2013) that can require more mental effort to analyze the 

model when the quantity of groups is high. However, quantitative metrics about the num-
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ber of activities and constraints showed significant reductions on the model with abstrac-

tions, by 32% less activities and 47% less constraints. Those metrics are related to the 

model size and mainly influence model’s comprehensibility (MAGGI et al., 2013). 

Regarding process model’s quality dimensions (VAN DER AALST et al., 2012), 

trace fitness, precision, generalization and simplicity will remain the same as the original 

model, because all discovered constraints are preserved and can be verified by using 

available conformance checking algorithms (DE LEONI et al., 2014). 

Table 5.8: Models comparison by complexity metrics. 

  Model without 

Abstractions 

Model with Abstrac-

tions 

Reduction Per-

centage 

Nº of Activities 25 17 32% 

Nº of Constraints 59 31 47% 

Different modeling concepts 15 16 -7% 

Nº of Groups 0 5 - 

Constraint/Activity Ratio 2.36 1.82 23% 

5.4 Final Remarks 

As observed in this case study, the proposed method generated a suitable set of 

groups of activities that could be used to create abstractions that made a Declare Map less 

complex and tending to be easier to understand. However, this conclusion is restricted to 

this case study and may not be generalized to different process models without further 

evaluations. As there are few real life event logs publicly available, and even fewer that 

gather characteristics for declarative modelling, the current analysis is limited to this case 

study. The groups’ evaluation by specialists was made by professionals with different 

levels of knowledge on the IT Service Management domain, and was limited to the num-

ber of participants. These facts may introduce some subjectivity on user’s evaluation and 

results may be different on other scenarios, with different process models and different 

people evaluating the groups. The choice of asking domain specialists instead of people 

in general is because the event log came from an ITSM system that is domain specific. 

Therefore, repeating this case study on different scenarios and evaluating them with a 

higher number of domain specialists are important steps considered for future work. An-

other futher improvement is to expand the experiment by introducing control groups, 
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manually designed to contain unrelated activities. This kind of groups would help identi-

fying any bias caused by the participants, due to fatigue, the order of the survey, or de-

mand characteristics (ORNE, 1962). 

As a contribution for declarative models analysis, the proposed method suggested 

groups of related activities that may be used to create a visualization layer that abstracts 

some details and helps user on understanding a declarative business process model in a 

higher abstraction level. 
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Chapter 6 - Conclusion 

This chapter presents the main features from this thesis and points its contributions, lim-

itations and possibilities of future work for research continuity. 

 

In a declarative models discovery scenario, there is a need to deal with complexity 

caused by the high number of discovered constraints, which hinders user understandabil-

ity and impose difficulties on model analysis. For traditional imperative process models, 

the use of abstractions successfully addressed this problem (SMIRNOV et al, 2011; LI et 

al, 2011; GÜNTHER et al, 2007). However, there are few works that deal with abstrac-

tions on declarative models (ZUGAL et al, 2013; DEBOIS et al, 2014). This dissertation 

aimed to contribute to declarative models discovery by presenting a novel technique to 

suggest abstract views for a low-level declarative model, when no information beyond 

activity labels is available. Those abstract views are derived from a linguistic analysis and 

clustering of process activity labels.  

The proposal was assessed through a case study with a real life dataset from the 

Business Process Intelligence Challenge 2014, which has the characteristics of an un-

structured business process. After applying the proposed method and having domain ex-

perts evaluate the suggested groups, the creation of an abstraction layer over the discov-

ered declarative model implied on a reduction of 32% on the number of activities, and 

47% on the number of constraints presented to the user, pointing to a complexity reduc-

tion when compared to the model without abstractions. 

6.1 Contributions 

The main contribution of this work is the application of a novel semantic abstrac-

tion criterion on declarative models in order to cope with complexity problems resulting 

for process mining. The technical solution includes the formulation of two algorithms to 

suggest groups of activity labels on declarative process models, in a user guided fashion. 

A prototypical software was built to operationalize the algorithms and automatically sug-

gest activity groups. Besides the semantic abstraction criterion, we proposed a method 

for creating abstract process views composed by the suggested groups of activity labels 
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over a low-level declarative map. The application of the method in a real life environment 

performed by a case study confirmed that the method is able to reduce the complexity of 

an automatically discovered declarative model and produces useful groups for domain 

stakeholder’s analysis. 

In addition to this thesis, for expanding the body of knowledge, this research also 

produced two scientific papers presented in an international and a national conference 

respectively (RICHETTI et al., 2014a and 2014b). 

6.1.1 Implications for research 

As main implications for research, the proposed method can be applied on declar-

ative process modeling and process mining disciplines. With regard to the applicability, 

the proposed approach is also applicable to any declarative modeling language, such as 

Declare, DCR Graphs or ReFlex. In general, the proposed visual notation can be inte-

grated with any constraint-based declarative modeling language with a graphical notation. 

In consequence, these models can be enriched with more abstract information and a drill 

down mechanism for the analysis of details.  

For process mining, reducing the complexity of a flexible or unstructured process 

model is still a concern. Several techniques have been proposed to produce less complex 

declarative models (BOSE et al., 2013; MAGGI et al., 2013; MAGGI et al., 2012). In 

another research branch, there exist works explaining how to model hierarchy and sub-

processes in declarative processes models (ZUGAL et al., 2013; DEBOIS et al., 2014), 

but few approaches try to apply these concepts on process mining scenarios. In such sce-

narios, sometimes the results present very complex models and the automatic support for 

creating abstract views helps on model’s analysis. The approach of this thesis comple-

ments previous techniques by addressing the semantic dimension of process activity la-

bels to create abstractions that are key for complexity reduction.  

As secondary goals, the semantic similarity measure between activities may also 

be applied on process model matching, since this area also considers pairwise compari-

sons to evaluate how process models differ among each other. Finally, the proposed 

grouping strategy can also be used for the creation of clusters of semantically similar 

elements on different areas beyond BPM, such as the creation of sense clusters for ranking 

abbreviations expansions present in document collections (BRACEWELL et al., 2005). 
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6.1.2 Implication for practice 

The results of this thesis also have implications for practice. The techniques may 

be used in process mining scenarios in collaboration with existing tools. They can help 

users on the creation of less complex and more abstract declarative models after discov-

ering a new process model, even when there is no previous knowledge available about 

the process model, which is a situation that could happen on such scenarios. Moreover, 

the proposed techniques can be integrated into commercial modeling tools in order to 

support modelers by automatically suggesting groups after the design of a model or to 

improve an existing process model.  

6.2 Limitations 

From the implementation, there are performance issues that need to be considered 

before creating a new software system or embedding the techniques into an existing tool. 

The extensive use of semantic similarity calculations at word-level affects algorithm’s 

performance, due the necessity of traversing lexical databases multiple times. For the 

presented case study, with the specified hardware and an event log with more than four 

hundred thousand events, the algorithm took about four hours to run completely, an exe-

cution time that prevents the method to be used in an online analysis. 

The labeling quality is crucial for generating useful information when creating 

groups of activities. Poor labeling may negatively impact groups suggestions. To avoid 

this limitation and improve results, it is important to follow recommended guidelines for 

labeling process activities (LEOPOLD, 2013). Regarding the creation of groups of activ-

ities, manual grouping usually considers more information beyond the semantics, which 

can be biased due to personal experiences and judgment of the modeler. It is not trivial to 

make a system capable of considering the same contextual information when performing 

the creation of a group as a person does. However, the use of semantic information from 

the activity labels showed a good acceptance among domain experts in the case study. 

Thus, the proposed approach intends to help domain specialists or beginner practitioners 

to have a better understanding on declarative process models. 

Generalization of this solution is limited by the single case study presented. For a 

more robust assessment on the quality of suggestions for groups of activities, there is a 

need to evaluate the method with different datasets. The number of participants that per-
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formed the analysis limited the evaluation of the groups’ suggestions. Thus, for broaden-

ing the application possibility to other scenarios, it is important to conduct new groups’ 

evaluations with novel datasets and with a higher number of domain experts. 

 

6.3 Future Work 

For future work, there are plans to consider abstractions in full conformance with 

subprocess rules for declarative models stated in (ZUGAL, 2013), also considering tem-

poral aspects, which can turn the abstraction layers executable. Another possibility is to 

embed this method on process modelling tools in order to provide support for creating 

abstract views from low-level designed processes or to help maintain process model col-

lections. For this, the development of a ProM plugin to generate the visualization layers 

for discovered declarative models using this framework is suitable. Another possibility is 

to embed the algorithms on the DCRgraphs.net19 modeling and execution tool to help 

modelers on automatically retrieving suggestions for subprocesses.  

In addition to the development issues, there are some opportunities to optimize 

the algorithm in order to reduce its execution time, which should be tested in order to 

assess performance limits.  The generation of groups suggestions may also be further 

investigated by directly analyzing the discovered process model, instead of the event log. 

If the execution time is reduced, the method may be executed on line during process min-

ing, when the proposed algorithm may be executed more than once during the iterative 

analysis and tuning of the process mining output. 

The semantic similarity between activity labels may be extended by using con-

cepts from sentence similarity calculation. Even knowing that activity labels are more 

likely to be incomplete sentences and they have identifiable structural elements, such as 

actions and objects (LEOPOLD, 2013), it will be interesting to consider aspects such as 

combining word overlap, term frequency and linguistic measures applied on computing 

sentence similarity (ACHANANUPARP et al., 2008), beyond the semantic abstraction 

and aggregation aspects. 

Regarding the subprocess metrics applied on the analysis, a single metric may be 

developed combining precision, recall, undershoot and overshoot.  

                                                 
19 See http://dcrgraphs.net. 
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To cope with the generalization limitations, new case studies must be performed, 

expanding the survey with improved control groups, also using different datasets and 

more domain experts involved.  
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