

UNIVERSIDADE FEDERAL DO ESTADO DO RIO DE JANEIRO

CENTRO DE CIÊNCIAS EXATAS E TECNOLOGIA

PROGRAMA DE PÓS-GRADUAÇÃO EM INFORMÁTICA

ASPECTS IDENTIFICATION IN BUSINESS PROCESS THROUGH PROCESS
MINING

Bruna Christina Pinto Brandão

Orientadores

Flávia Maria Santoro

Leonardo Guerreiro Azevedo

RIO DE JANEIRO, RJ – BRASIL

SETEMBRO DE 2015

Não é possível exibir esta imagem no momento.

 Brandão, Bruna Christina Pinto.

B817 Aspects identification in business process through process mining /

 Bruna Christina Pinto Brandão, 2015.

 91 f. ; 30 cm

 Orientadora: Flávia Maria Santoro.

 Coorientador: Leonardo Guerreiro Azevedo.

 Dissertação (Mestrado em Informática) - Universidade Federal do

 Estado do Rio de Janeiro, Rio de Janeiro, 2015.

 1. Mineração de dados (Computação). 2. Gestão de processos de

negócios. 3. Linguagem de programação (Computadores). 4. Controle

de processos - Administração. I. Santoro, Flávia Maria. II. Azevedo,

Leonardo Guerreiro. III. Universidade Federal do Estado do Rio de

Janeiro. Centro de Ciências Exatas e Tecnológicas. Curso de Mestrado

em Informática. IV. Título.

 CDD – 005.74

“If you steal from one author it's plagiarism; if you steal from many it's research.”
Wilson Mizner

 “If we knew what it was we were doing, it would not be called research, would it?”
Albert Einstein

V

Agradecimentos

À minha mãe, que, com muito carinho e apoio, não mediu esforços para que eu

chegasse até esta etapa de minha vida.

À minha irmã, que foi fundamental em minha formação pessoal e profissional e

que sempre esteve comigo me incentivando e apoiando.

Aos meus orientadores Flávia Santoro e Leonardo Azevedo, pelo convívio, pelo

apoio, pela compreensão e pela paciência na orientação e incentivo que tornaram

possível a conclusão desta dissertação.

A todo o corpo docente da UNIRIO, pelo carinho, dedicação e qualidade de

ensino demonstrado ao longo do curso.

Aos meus amigos, que foram essenciais durante esse período, me auxiliando,

apoiando, rindo e me divertindo.

E, finalmente agradeço a todos aqueles que de alguma forma estiveram e estão

próximos, me incentivando a sempre a conquistar as minhas loucuras.

VI

BRANDÃO, Bruna Christina Pinto. Aspects Identification in Business Process

Through Process Mining. UNIRIO, 2015. 91 páginas. Dissertação de Mestrado.

Departamento de Informática Aplicada, UNIRIO.

Resumo

Elementos utilizados na modelagem de processos de negócio podem estar

dispersos em processos distintos, o que torna difícil gerenciar mudanças, analisar

melhorias no processo ou verificar impactos transversais. Estes elementos dispersos são

chamados de aspectos. Semelhante ao paradigma orientado a aspectos em linguagens de

programação, em BPM, o uso de aspecto tem o objetivo de modularizar os interesses

transversais espalhados por todos os modelos. A modularização facilita a gestão do

processo (por exemplo, na reutilização, manutenção e compreensão). As abordagens

atuais para identificação de aspecto são feitas manualmente, resultando no problema da

subjetividade e da falta de sistematização. Este trabalho propõe um método para

identificar automaticamente os aspectos em processos de negócios através de seus logs

de eventos. O uso de log de eventos foi escolhido por representar o processo como é

executado na realidade. O método baseia-se em técnicas de mineração e que tem como

objetivo resolver o problema da subjetividade da identificação feita por especialistas.

Os resultados do método mostram-se positivos sobre a identificação de aspectos. O

método pode ser utilizado para auxiliar especialistas em identificar aspectos.

Palavras-chave: Aspectos, Mineração de Processos, Gestão de Processos de Negócio.

VII

Abstract

Elements used to model business process models can be scattered (repeated)

within different processes, making it difficult to handle changes, analyze process for

improvements, or check crosscutting impacts. These scattered elements are named as

Aspects. Similar to the aspect-oriented paradigm in programming languages, in BPM,

aspect handling has the goal to modularize the crosscutting concerns spread across the

models. Modularization facilitates the management of the process (e.g., concerning

reuse, maintenance and understanding). The current approaches for aspect identification

are made manually, resulting in the problem of subjectivity and lack of systematization.

This work proposes a method to automatically identify aspects in business process from

its event logs. Event logs were chosen because it corresponds to information about how

processes are really executed (as-is). The method is based on mining techniques and it

aims to solve the problem of the subjectivity identification made by specialists. The

results from the method are positive about aspects identification. The method can be

used to help specialists identify aspects.

Keywords: Aspects, Process Mining, Business Process Management.

VIII

Table of Contents

1. Introduction ... 14

1.1. Motivation .. 14

1.2. Problem Description and Hypothesis .. 16

1.3. Scientific Methodology .. 16

2. Background ... 18

2.1. BPM ... 18

2.2. Aspects ... 19

2.3. Aspects in BPM ... 22

2.4. Process Mining .. 24

3. Related Work .. 29

4. Aspect Identification Method .. 35

4.1. Method Description ... 35

4.2. Method Overview .. 38

4.2.1. Extract Process Elements ... 39

4.2.2. Apply Clone Approach ... 40

4.2.3. Apply Cluster Approach ... 44

4.2.4. Example of the Method Application .. 47

5. Case Study ... 50

5.1. Scientific Methodology Approach ... 50

5.2. Proof of Concept .. 51

5.3. Real Life Events Case Study ... 57

5.3.1. Event log pre-processing scenario .. 58

5.3.2. Proposed method execution .. 61

5.3.3. Evaluation by specialists .. 63

5.3.4. Interviews ... 64

5.3.5. Discussion ... 67

6. Conclusion ... 70

6.1. Contributions ... 70

6.2. Limitations and threats ... 71

6.3. Future Work ... 72

IX

References .. 73

Appendix I. Real Life Events Processes ... 78

Appendix II. Results Comparison .. 81

Appendix III. Log Files ... 82

Appendix IV. Original Log .. 87

X

List of Figures

Figure 1- Example of secondary functions with the main functionality [Garcia, 2010]. 14

Figure 2 – Scientific methodology overview. ... 17

Figure 3 – Weaver relationship [adapted from [SOARES et al., 2012]. 20

Figure 4 – Relationship between a class and one aspect [adapted from [GARCIA, 2010]. 21

Figure 5 – Process Model with aspects modularization [CAPPELLI et al., 2009]. 23

Figure 6 – XES Metamodel [DUMAS et al., 2013]. ... 26

Figure 7 – XES file example [DUMAS et al., 2013]. ... 27

Figure 8 – Acquiring products process more abstract. .. 37

Figure 9 – Acquiring products process less abstract. .. 37

Figure 10 – Method Overview. ... 38

Figure 11 - Declaration of school registration process. ... 47

Figure 12 – Cancellation of school registration process. .. 48

Figure 13 – Snapshot of the declaration of school registration process. 48

Figure 14 – Require discipline program process. .. 52

Figure 15 – Require school record process. .. 52

Figure 16 – Generated log. .. 54

Figure 17 - Require discipline program process from Tavares et al. [2014] 56

Figure 18 – Output of aspects exclusively by cluster approach with 10% threshold. 62

Figure 19 – Output of aspects not exclusively by cluster approach with 5% threshold 62

Figure 20 – Output of aspects exclusively by cluster approach with 1% threshold 68

Figure 21 – Process model of Service Component “WBS000091”. ... 78

Figure 22 – Process model for Service Component “WBS000263”. .. 79

Figure 23 – Process model for Service Component “WBS000073” ... 80

XI

List of Algorithms

Algorithm 1 – Read XES Files and extract process event names. 40

Algorithm 2 – Tag event names. .. 41

Algorithm 3 – Stanford phrase parse. ... 42

Algorithm 4 – Get events synonyms. ... 43

Algorithm 5 – Consolidate events. ... 44

Algorithm 6 – Building linked list .. 45

Algorithm 7 – Clustering aspects ... 47

XII

List of Tables

Table 1 – Related work comparison. .. 33

Table 2 - Aspect results comparison... 81

Table 3 - Interaction dataset. .. 87

Table 4 - Incident dataset.. 88

Table 5 - Incident activity dataset... 90

XIII

List of Abbreviations

AO-BPMN – Aspect-Oriented Business Process Modeling Notation

AOP – Aspect-Oriented Programming

AOPML – Aspect Oriented Process Modeling Language

BPEL – Business Process Execution Language

BPM – Business Process Management

BPMN – Business Process Model Notation

EPC – Event-driven Process Chain

IDEF – Integrated Definition

NLP – Natural Language Processing

SOA – Service-Oriented Architecture

UML – Unified Modeling Language

WSD – Word Sense Disambiguation

14

1. Introduction

In this chapter, it is presented the motivation of this work, the problem being

addressed, the working hypothesis (i.e., the research question), and the scientific

methodology applied. It also presents the dissertation structure.

1.1. Motivation

In a software development, the functionalities are usually implemented through

object-oriented programming. In object-oriented programming, each class method aims

to execute a given business rule (i.e., primary functionality), but it also contains

secondary functionalities which supports the primary functionality in its execution.

The software code corresponding to the secondary functions, such as exception

handling, time constraints, transaction management, security control, access control,

logging, are many times spread all over an application (i.e., in many methods). For

example, a data logging functionality in object-oriented programming is implemented in

a single class, but it is invoked in other methods as a secondary function, becoming a

spread code. These spread codes are defined as crosscutting concerns [PAHLSSON,

2012]. Figure 1 illustrates secondary functions mixed with the business rule in a code.

Figure 1- Example of secondary functions with the main functionality [Garcia, 2010].

15

The aspect-oriented programming (AOP) approach aims to encapsulate spread

codes through a construct called Aspect [KICZALES et al., 1997]. An Aspect changes

the behavior of the code with an additional behavior at one point in the code execution.

This additional behavior is called advice, and the execution point is defined as join point

[CASACHI et al., 2012].

The aspect-oriented programming allows the code to be encapsulated and

modularized. This programming methodology has advantages, such as reduction in the

code spreading, the responsibilities of each module are more transparent, and the

modules are more independent. The evolution of the application is easier since the loose

coupling enables changes in the application without changing the main functionalities.

There is more reusability of code because the modules are less dependent. The systems

are easier to develop and maintain because aspect facilitates the integration of new

functionalities without causing problems to other parts of the system. Besides, it has a

low cost to introduce new features [GARCIA, 2010].

The aspect-oriented paradigm inspired its use in BPM (Business Process

Management) with the same goal to modularize the crosscutting concerns spread across

the software specification [CAPPELLI et al., 2009]. Crosscutting concerns in BPM are

also defined as the interests that cause the scattering and tangling problem. The

scattering problem is the repetition of concerns within process models. The tangling

problem means that any change in a concern should be reflected in all processes which

use the concern [CAPPELLI et al., 2010] [CHARFI et al., 2010] [COLLELL, 2012]

[JALALI et al., 2014a] [WANG et al., 2005]. Thus, in BPM, crosscutting concerns are

elements scattered and tangled within process models. They can be part of the process

core (e.g., business rules), and not only secondary features as in AOP (e.g., exception

handling, time constraints, check authorization and authentication, transaction control,

security control, access control, logging) [JALALI et al., 2014b] [SANTOS et al.,

2011].

Using aspects in BPM improves the modularization of business process model.

Thus, the aspect identification (and consequently its implementation) facilitates

maintenance, understanding, modeling and the reuse of parts of the process. Hence

improving the process management.

16

1.2. Problem Description and Hypothesis

Aspects identification assists to improve process modularization. It facilitates

management of the process (e.g., reuse, maintenance and understanding). A method to

identify aspects automatically can assist in decision making and saving time. Currently,

the proposals for identifying aspects laid on manually analysis of business process

models by experts [CAPPELLI et al., 2009] [JALALI et al., 2014b]. Although based on

heuristics, the identification made by humans raises the problem of subjectivity, because

it depends on each expert judgment. Towards an answer for this problem – the absence

of a more “technical”, unbiased identification method – it results in the following

research question

How to identify automatically aspects in business

processes?

The research hypothesis undertaken is:

If process mining techniques are applied on

information systems event logs, then aspects in processes

can be identified reducing the subjectivity in the

identification.

In order to address this research question, this work aims at developing an

automated method to identify aspects. The method applies process mining techniques

on information systems event logs. The identification of aspects in logs makes the

technique independent from the process model, although it is dependent on the event

log structure. A proof of concept was performed to do a primary evaluation of the

method and to demonstrate the potential for real-world application. Afterwards, it was

evaluated with a real life case study. The results from the method are positive. In both

evaluations – proof of concept and real life case study – the method was capable to

identify aspects.

1.3. Scientific Methodology

The scientific methodology employed in this work was conducted in four stages.

In the first stage, it was defined the research problem and the hypothesis. Besides,

process mining on event logs was chosen as approach for the solution. At the next stage,

a theoretical background research was performed, looking for existing techniques or

inspiration to be used in the created solution. In the next step, the solution was designed

17

and implemented. In the third stage, a proof of concept was performed for an initial

evaluation through a comparison of results from an example of the literature. In this

case, it was used the same processes used by Tavares and Marinho [2014] to check if

the proposed method identifies the same aspects identified by the experts in

[TAVARES et al., 2014]. In the fourth stage, it was conducted a case study on a real life

log of events. This case study aimed at evaluating the proposed method in a real life

context. The results from both studies (proof of concept and real life case study) are

presented in the corresponding chapter (Case Study). Figure 2 illustrates the stages and

steps.

Figure 2 – Scientific methodology overview.

This work is divided in 5 chapters as follows. The Chapter 1 is the introduction.

Chapter 2 presents the background concepts, including business process management,

aspects, aspects in business process management and process mining. Chapter 3

analyzes the related work. Chapter 4 describes the proposed method. Chapter 5 presents

the case study with the proof of concept and the real life case study. Chapter 6 presents

the conclusion and list future works.

Stage 1

1. Research
problem
2. Hypothesis
3. Designed
solution

Stage 2

4. Theoretical
background
5. Solution
Implemented

Stage 4

7. Real life
events case
study

Stage 3

6. Proof of
Concept

18

2. Background

This chapter presents the theoretical background concepts. The concepts of

business process management, aspects, aspects in business process management and

process mining are explained.

2.1. BPM

According to Davenport (1994, p. 6) “A process is a simply set of structured

activities and measures designed to result in a specified product for a particular

customer or market. Thus, a process is a specific ordering of work activities across time

and space, with a beginning, an end, inputs and outputs clearly identified: a framework

for action “[DAVENPORT, 1994].

Weske [2012] defines business process as: “a set of activities that are performed

in coordination in an organizational and technical environment. These activities jointly

realize a business goal. Each business process is enacted by a single organization, but it

may interact with business processes performed by other organizations.” A business

process is described by one or more procedures that together perform one business

objective. The executing of a business process has a well-defined start and end

conditions, and can combine automatic and manual procedures [WfM, 1999].

Business-processes-oriented companies have a horizontal structure, whose main

feature is the focus on the customer, operating under a matrix structure, where

hierarchical managers are replaced by process owners. They operate with autonomy and

responsibility for the entire process, regardless of the hierarchical structure. The

horizontal organization, oriented to business processes, makes the operation more

flexible, focused on the organization's purposes and with greater proximity to the final

consumer [OSTROFF, 1999]. On the other hand, vertical organizations are those

structured by functions, in which the hierarchical pyramid is the great feature.

Overlapping and superimposed decisions levels are common in this kind of

organizations, creating frequent friction among end customers and suppliers.

The business process management is concepts, methods and techniques in which

supports the design, administration, configuration, enactment and analysis of business

19

processes. The base of business process management is the explicit representation of

processes with their activities and the constraints between them. Business process

management supports analysis, improvement and enactment of the processes [WESKE,

2012].

The business process modeling is the set of practices or tasks that companies can

execute to visually describe all aspects of a business process. The aspects includes its

course, control and decision points, triggers and conditions for the executing of

activities, context in which an activity runs and the associated resources [JOSUTTIS,

2007 apud BLOOMERG et al., 2006].

A model is a representation of the process that enables companies to document,

simulate, share, implement, evaluate and continuously improve their operations

[JOSUTTIS, 2007 apud BLOOMERG et al., 2006].

The activities of analysis and process modeling can be performed using tools

available on the market. There are about 300 software that offers a variety of features

depending on the chosen product [OLIVEIRA et al., 2006]. Examples of tools are: Aris

(http://www.softwareag.com/corporate/default.asp), BizAgi (http://www.bizagi.com),

Bonita (http://www.bonitasoft.com) and Signavio (http://signavio.com). A business

process management system is a generic software system that is driven by explicit

process representations to coordinate the enactment of business processes [WESKE,

2012].

Among the currently most widespread notations for process modeling are

BPMN (Business Process Modeling Notation), UML (Unified Modeling Language),

IDEF (Integrated Definition) and EPC (Event-driven Process Chain). After choosing the

notation and tool, you must identify the process or processes you want to model

conducting a detailed survey of the process to discover the workflow, who is

responsible for initiating the process, who makes the next activity, among other details

[VALLE et al., 2012].

2.2. Aspects

Originally, aspects are the modularization of crosscutting concerns in object-

oriented software. The aspect-oriented programming allows the code to be encapsulated

and modularized.

20

The implementation of aspect-oriented programming normally consists of

[SOARES et al., 2012]:

 A component language for components programming;

 One or more aspect languages for aspects programming;

 An aspects combiner (aspect weaver) – to combine the artifacts of the

programming language and the aspects;

 A program written in the components language;

 One or more programs written in the aspects language

Figure 3 – Weaver relationship [adapted from [SOARES et al., 2012].

Figure 3 illustrates the relationship of the artifacts present in the aspect

implementation.

In the context of aspect-oriented programming, components are abstractions

provided by the language that allow the implementation of a system functionality

(procedures, classes, functions, objects) [SOARES et al., 2012].

The aspect language supports the implementation of desired features clearly and

succinctly, providing the programmer structures needed to describe the behavior of

aspects and situations in which they must act [SOARES et al., 2012]. AspectJ is an

example of an aspect language. It extends the Java language with new structures to

support the modular implementation of crosscutting concerns. New elements are:

(i) join points represent execution points;

(ii) pointcuts represent sets of join points;

(iii) advice represents the methods attached to pointcuts.

Aspects are modular units of crosscutting implementations composed of

pointcuts, advice and own statements of the Java language [KICZALES et al., 2003].

21

Figure 4 illustrates a Java class using aspect elements. The Java class Hello has

two join points sayHello and sayMessage. They will be intercepted by the aspect

AspectDeclaration, which has the pointcut hello referencing all methods of Hello class.

This pointcut has an advice, which defines that the command hello should be to be

executed after the accomplishment of the join point found by the pointcut [GARCIA,

2010]. In other words, after the execution of each method of Hello class the hello

method should be executed. The text printed in this system console would be:

“HelloHelloAspect”. The combination of the Java code with the Aspect code is done in

a process named as weaving.

Figure 4 – Relationship between a class and one aspect [adapted from [GARCIA, 2010].

Aspects have similar meaning as services in a SOA (Service-Oriented

Architecture) context. Services are defined as parts or entire functions of a system that

may be available to another system and can be invoked through messages [JOSUTTIS,

2007]. The services must operate in an independent way of other services, and should

have a well-defined interface. Services are logical representations of elements (e.g.,

22

activities, business rules, business requirements) in the business process that can be

mapped on input, processing and output. When those elements can be performed

automatically or by human using systems (in a semi-automated approach), they can be

made available as services in SOA. Then the difference from service to aspect is that a

service represents elements of business process that can be performed automatically or

supported by systems. On the other hand, aspects can also be elements performed

manually.

2.3. Aspects in BPM

The same logic of aspects in software code applies to aspect in process models.

Crosscutting concerns in BPM are also defined as the interests that cause the scattering

and tangling problem [CAPPELLI et al., 2010] [CHARFI et al., 2010] [COLLELL,

2012] [JALALI et al., 2014a] [WANG et al., 2005]. They are elements scattered and

tangled within process models, and they can be the part of the core of the process (e.g.,

business rules) and not only secondary features as in aspects in oriented-programming.

Cappelli et al. [2009] propose a meta-language called Aspect Oriented Process

Modeling Language (AOPML), which is independent of any business process language.

The use of this meta-language improves business process model modularity. In another

work, Cappelli et al. [2010] developed a notation of AOPML specifically to handle

BPMN (Business Process Model Notation – [OMG, 2011]) models. They called this

particular notation as Aspect-Oriented Business Process Modeling Notation (AO-

BPMN), which uses aspect-oriented paradigm to extend the BPMN. In summary, they

proposed the introduction of graphical elements in the notation through new roles for

the lanes and relationships. In that case, the crosscutting concerns are represented

separated in a vertical lane, orthogonal to the processes. It uses a new connector called

relationship cross, which represent the composition between the transverse elements of

interest and process model. However, this approach has proved to be confusing for

analysts, due to the many lines connecting elements, so there are some works which are

trying to improve this representation.

23

Figure 5 – Process Model with aspects modularization [CAPPELLI et al., 2009].

Figure 5 illustrates the business process model “send articles to reviewers”

modularized by aspects using AO-BPMN. In this process, the aspect “Log information”

is reused when there is the need to store information, e.g., in the execution of the

activities “Send invitation”, “Receive invitation”, “Reply invitation” and “Receive

response”. In each activity execution, the aspect “Log information” activates its own

execution intervening in the activity within the process, and storing information about

the execution of the activity.

The modularization of processes through aspects brings the same benefits of

aspect-oriented programming. Processes modularization provide a better understanding

of the process because it groups activities by their goals and enables reusability of parts

between processes that share the same "interests", including key features such as

business rules.

The identification of aspects is the first step to be done before the

implementation or the modeling of aspects. Cappelli et al. [2010] propose a set of

heuristics (first recommended by Silva [2006] in her PhD thesis to support the

identification of a concept as a crosscutting concern. The heuristics are:

 “If the concept is repeated several times in different places;

 If the concept is used by different other concepts;

 If the concept reflects an integration of semantically distinct situations;

24

 If the concept represents a decision situation from which different

options may be taken, and its absence does not interfere with the global

objectives of the whole;

 If the concept can be reused in other domains; and

 If the concept is very much independent of the other concepts.”

The proposed method uses these heuristics as the definition of crosscutting

concerns. Therefore, the method seeks events in the log that are repeated several times

in different processes. It seeks events which are used by other events and events that can

be reused in other processes. It also seeks for an integration (grouping) of crosscutting

concerns from distinct situations. That is, if two crosscutting concerns (events) are

almost used together from different situations (processes), the method suggests

integration. The heuristics “if a concept is independent of other concepts” and “if the

concept represents a decision situation with different options, which does not interfere

with the global objective” were not explored in the method proposed in this dissertation.

In software development, there are three approaches in to identify aspects: AOP

clone, cluster and analysis fan-in. However, there is not a technical approach to identify

automatically the crosscutting concerns in business process. Most approaches are

manual – executed by experts. The next chapter presents the existing approaches of

aspects in business processes.

2.4. Process Mining

Process mining is a discipline that relates data mining and process intelligence.

Process intelligence is the discovery, analysis and verification if the process is effective

for business improvement. Process mining is performed from data recorded in event

logs, containing information that was created during the execution of the process [VAN

DER AALST et al., 2004]. Therefore, a process discovered through mining event logs

is called AS-IS process, i.e., how the process really runs. On the other hand, a modeled

processes is called TO-BE process, i.e., it presents how the process should run

[DUMAS et al., 2013].

There are three approaches of process mining: process discovery, process

analysis and process verification. The most common algorithm for process discovery is

the alpha algorithm [DUMAS et al., 2013]. Alpha algorithm discovers the process by

mapping the relationships between the activities present in the process according to

25

their orders in the event logs. Initially, it maps the basic relations of precedence, then

the causal relationships, the potential parallelism relations and relations with no direct

succession.

The second approach which uses process mining is process performance

analysis. The analysis is based on four dimensions: Time, Cost, Quality and Flexibility.

The time dimension checks the lifecycle of activities and the waiting time to execute

them. The cost dimension can be analyzed if there are expense details present in the

logs, e.g., the financial cost or resource time required to execute the process activities of

the current instance. The quality dimension analyzes the process quality. The flexibility

dimension is the range of variation the process enables, i.e., it analyzes whether the

discovered process (as-is) allows paths which are or are not desirable [DUMAS et al.,

2013].

The third approach is the process conformance verification, in which the process

is assessed regarding its constraints of exclusivity, order and mandatory issues. The

constraint of exclusivity checks activities that exclude others activities – e.g., “order

accepted” and “order rejected”. The constraint of order checks the order of the activities

(e.g., rent equipment before checking availability). The mandatory constraint checks

activities which must be executed for any purpose of the organization, e.g., “Review

request for rent in order to control the cost”.

Process mining is applied in events log generated by information systems. An

IEEE process mining task force created a standard log format to be able to be use in any

process mining tool. Van der Aalst et al. [2011] standardized XES

(www.xesstandard.org), a standard logging format that is extensible and supported by

the OpenXES library and by tools such as ProM, XESame, and Nitro. The metamodel

of XES is illustrated in Figure 6.

26

Figure 6 – XES Metamodel [DUMAS et al., 2013].

Each XES file represents one log. Each log contains multiples traces, which

contains multiple events. Log, traces and events contain attributes. An attribute

corresponds to a key value pair. The attribute value has type, which can be String, Date,

Int, Float or Boolean. Attributes refers to a global definition. For example, a global

definition could state each trace must have the attribute name. Another global definition

could state each event must have the attributes name, timestamp and resource. The

classifier maps one or more attributes of an event to a label that is used in the output of

the analysis tool [DUMAS et al., 2013]. For example, the log has a classifier defining

that the attribute name is an activity classifier, which means that each event in the log

with a name will be classified as an activity in the analysis tool. Figure 7 shows a XES

file example.

27

Figure 7 – XES file example [DUMAS et al., 2013].

The minimum information required in the log for process mining is a trace id,

timestamp and activity (or log action). This work assumes the log has at least this

information and it fits the XES structure. The XES meta-model has been purposefully

and carefully designed to be independent of any implementation. OpenXES is an open

source (free software) library implemented in Java, which has been designed to adhere

to the following goals [GÜNTHER et al., 2014]:

 To be compliant to the XES;

 To be straightforward to use and easy to integrate by developers;

 To provide the highest performance for event log data management and

storage;

 To serve as clear and understandable reference implementation for other

implementations of XES.

28

There are several software products with process mining capabilities, for

example: ProM, Disco, ARIS Process Performance Manager and others [VAN DER

AALST et al., 2011]. ProM is the only open-source framework and it also has countless

process mining algorithms [VERBEEK, 2010]. Disco is a professional complete process

mining toolkit from Fluxicon that makes process mining fast and easy, and it has

academic license [GÜNTHER et al., 2012]. ARIS Process Performance Manager is a

product from Software AG, which has the goal to execute optimization combining

business intelligence (BI) with automatically process discovery.

The method proposed in this dissertation is based on two algorithms of process

mining. The first algorithm was created by Buijs et al. [2013], which identifies a single

process model from different event logs. This algorithm uses the open XES library and

it has at least two log files as input.

The second algorithm is the Pattern Abstraction algorithm from the plugin with

the same name [VERBEEK, 2010]. The Pattern Abstraction is a ProM tool plugin,

which automatically discover patterns of activities and suggests grouping the identified

activities as a single one, making the process more abstract. This algorithm has as input

one log file. The algorithm created in this dissertation to find patterns used the idea to

group events by its pattern, but with a different implementation. The implementation is

different because the method has at least two logs as input and it does not use the

abstraction functionality. The details from the algorithms used in this dissertation is

described in Chapter 4.

29

3. Related Work

The proposals for identifying aspects in business process are in general based on

manual identification by experts [CAPPELLI et al., 2009] [JALALI et al., 2014b].

Other approaches for aspect identification analyzed are on the domain of software

requirements, not in business process models. They identify aspects automatically in

text, but they only consider non-functional aspect of business process instead of

functional aspects as the approach of this work. Those approaches for automatically

identification of aspect in text consider keywords and document structure to identify

crosscutting concerns, i.e., it searches for verbs referring to verifications (“checks”,

“verifies”) or verbs associated with persistency (“adds”, “stores”, “updates” and

“modifies”) in specifics places in the use case (e.g. descriptions) . Hence, they do not

consider functional crosscutting concerns, e.g., business rules.

Jalali [2014b] proposes an approach to enable the identification of process

models with crosscutting concerns from the event logs. He states the process mining

techniques should discover crosscutting concerns from a log file by searching for

duplicates tasks. However, the subject of finding duplicate task within a process is in an

early stage. For example, the existing techniques cannot claim if the task is duplicated

or if the process has loops. He also states that there is no existing solution to discovery

crosscutting concerns from a log file of multiples process models. This is due to the lack

of process mining techniques able to relate and analyze process variants. Thus, the

discovery of multiple processes models with crosscutting concern within one log file is

not possible yet [JALALI, 2014b apud VAN DER AALST, 2013]. After demonstrating

the current techniques of process mining cannot discover processes models with

crosscutting concerns, he proposes an approach to discover this kind of processes

models.

The Jalali [2014b] proposed approach – to enable discovering process models

which contain crosscutting concerns – is a cyclical process containing four phases: (i)

Identification of crosscutting concerns; (ii) Elimination of crosscutting concerns; (iii)

Business process discovery; (iv) Crosscutting concern and process model relation

discovery. At the first phase, the identification process is manual by doing interviews

with specialists. At the second phase, the crosscutting concerns identified by the first

30

phase are eliminated from the event logs. Therefore, the logs will only contain the main

activities for each process model. At the third phase, the discovery of business process

model is done by process mining algorithms over the cleaned log. At last, in the fourth

phase, the relation between the crosscutting concerns and process model are found. This

relation discovery is also done by interviewing the specialists. The whole approach is

cyclical, so all crosscutting concerns may be identified and their events may be

eliminated through several cycles. Even though he mentions automatically discovery by

mining techniques to discover duplicated activities, he makes the aspect discovery

manually by interviewing business process specialists, and not automatically as the

proposal of this work.

Sampaio et al. [2005] propose the identification of aspects using natural

language processing (NLP) in business requirements. To the best of our knowledge,

these techniques are reported as ineffective when requirements are complex or

unstructured. Their work presented an approach for mining aspects from requirements-

related documents based on NLP techniques that enable an efficient context sensitive

analysis of textual documents. The documents can vary from very informal textual

documents, such as interviews and high level descriptions of the system, to more

structured documents such as use case textual descriptions or viewpoint descriptions. A

tool was developed to provide support and help the developers automatically mine and

model the crosscutting concerns without having to previously read the requirements

documents.

Campos et al. [2010] discussed the identification of aspects via inspection of use

cases descriptions. Their technique seeks identify aspect candidates analyzing a set of

use cases described in a specific format (template). They suggested a use case template

and a checklist to verify consistency of the process description. The template includes

sections to make explicit aspect candidates, i.e., use case step numbering indicates

where the aspect candidates should be inserted (i.e., join points). Their work emphasizes

the aspects candidates are normally found in the extensions of the description. The main

difference between the approach and others is the use of the description structure to

identify aspect candidates. Also, it is the only work about mining early aspects in

business requirements that considered both requirements (functional and non-

functional).

Rago et al. [2009] propose also the identification of aspects using natural

language processing techniques from use cases descriptions. They present a semi-

31

automated approach, which aims at improving the precision of the aspect identification

process in use cases. They apply a combination of text analysis techniques (natural

language processing – NLP) and word sense disambiguation (WSD). Their analysis is

focused on the relationships among terms in use cases (e.g., verbs, direct objects) that

often hint crosscutting behaviors. The approach generates a graph of candidate concerns

that are scattered in the use cases. It also produces a ranking of these concerns according

to their importance. Then, the developer selects which concerns are relevant. Although

the approach can be integrated into a UML development improving requirements

elicitation, the processing time is a challenge. The better the approach precision, more

time would it take (precision of 90% took 90 minutes). Their approach suggests the

techniques (NLP and WSD) can solve issues related to synonyms, vagueness and

ambiguity in text.

Souza et al. [2011] recommended the identification of services, considering a

SOA (Service-Oriented Architecture) approach, from a business process model

designed in an aspect-oriented fashion (AO-BPM) [CAPPELLI et al., 2010]. Services

should be modular [JOSUTTIS, 2007]. This allures modularization as a key concept in

service identification. Thus in an aspect-oriented business process modeling (AO-

BPM), crosscutting concerns are encapsulated in modules (aspects) improving the

modularity of the process. Therefore, service identification will benefit from modular

business processes. The approach is based on an existing method for service

identification without aspect modularization [AZEVEDO et al., 2009 and 2011]. They

describe the evolution of the existing method to achieve the goal of using the aspect-

oriented business process for identifying candidate services. There are other approaches

for service identification from business process models and for service composition

from an aspect-oriented approach [CHARFI et al., 2004]. However, all of them are

concerned with services identification and not with aspect identification.

Tavares et al. [2014] propose improvements to the business process modeling

notation originally published by Cappelli et al. [2010], which uses the aspect

orientation, generating smaller models for easy understanding and maintenance.

Furthermore, they propose a guide for aspect-oriented process modeling. Their work is

based on the three main elements of aspects (joinpoint, pointcut and advice). The

joinpoint is represented by a small circle with the number of the aspect in the model.

The advice is a textual representation to help the execution of the artifact attach to the

joinpoint. The pointcut is also a textual representation which shows where the aspects

32

are executed. It is represented by the pool side, which illustrates the activities related to

aspects. The aspect modelling is done in a separated pool from the business process

model. This change has been proposed because the AO-BPM works well for small

models, but for large models, it can hinder reading and understanding. The aspect pool

should follow some rules. The first rule is that it must be created one lane for each

aspect, which in turn must have the artifact that identifies which aspect will be used.

The second rule is that the actors should be identified in divided lanes. The third rule is

that the aspect pool should be independent from the process model, and the output

present in the model. The guide for aspect-oriented process modeling extends a process

modeling methodology found in the literature ([SHARP et al., 2001]). The methodology

goal is to gather information from the process model to be able to outline and

understand it. The outline of the process is to gather all possible information to define

the process limits (where begins and end), main activities, actors, stakeholders, data and

system involved. It consists by 6 steps:

 Assess the company culture – Indicate the reason of the existence of the

business, what the company does and what it is.

 Develop a process map – Identify a set of related processes and draw up

a map in order to clarify what is inside/outside of the scope of each one

of them, and it also shows the relations between processes.

 Set the scope of the processes – Establish the scope of each one of the

process and does a record with the most important information.

 Assess the stakeholders – Realize stakeholders that relate to aspects and

not a main activity.

 Investigate the enablers of the process – For example: Process workflow

design (actors, steps and flow); Motivations and measurements; Policies

and Rules; and others.

 Develop a glossary of terms;

This results in documentations, which is used to identify the aspects during the

outline step. The aspect identification is done manually throughout the creation of the

documentation. However the aspect identification from the method in this dissertation is

automatically from event logs.

Although there are approaches for aspects identification in business

requirements and use cases ([CAMPOS et al., 2010], [RAGO et al., 2009], [SAMPAIO

33

et al., 2005]), and to use aspects to identify services [SOUZA et al., 2011], the approach

from this work differentiates by identifying aspects from events logs. The main benefit

of this approach is to identify aspects automatically in the business level, i.e., in the

business process models, the obvious crosscutting concerns (non-functional

requirements) normally are not present. The method tries to identify the scattering and

tangling problem within a process execution focusing on the functional requirements

instead of only searching for non-functional requirements. Besides this advantage, the

method proposed in this work is not totally dependent on the specialist judgment. In the

analyzed works, even though the specialists follow heuristics, the manual identification

leads to the subjectivity problem.

Jalali [2014b] work is the only one that resembles to the method of this work.

Although Jalali is identifying process models through process mining, then after the

model discovery, he identified aspects in the model. The goal of the method of this

work is to identify crosscutting concerns and not the process. Table 1 presents a

comparison of these works.

Table 1 – Related work comparison.

Work Manual
identification?

Automatic
identification?

Artifact of
identification?

Identification
among
processes?

Jalali [2014b] Yes (by
specialist).

No (discusses
manners
automatically,
but does
manual
identification
by specialist).

Uses process
mining to
discover the
process from
event logs.
However,
aspects are
identified using
the models
instead of the
logs.

No.
Identification
within one
process.

Sampaio et al.
[2005]

No Yes (using
NLP)

Requirements
documents
(complex or
unstructured)

No. Different
documents, but
the same
system.

Campos et al.
[2010]

Yes (inspection
of use cases
descriptions)

No. Use cases
descriptions.

No. Different
use cases, but
aspects only
found in a
single use case.

Rago et al.
[2009]

No Yes (using
NLP and

Use cases
descriptions.

Yes. Looks for
concerns

34

WSD) scattered
among use
cases.

Souza et al.
[2011]

Yes (A
specialist
identifies
services, not
aspects)

No Process model
designed using
AO-BPM.

No. Services
identified
within a single
process.

Tavares et al.
[2014]

Yes (by
specialist).

No Documents
with process
information

Yes. Seeks for
activities
repeated in
different
processes.

Method from
this work

No Yes Process log
(event logs)

Yes, however
is restrict to
identify aspects
among
processes.

35

4. Aspect Identification Method

In this chapter, it is presented the aspect identification proposed in this

dissertation. All the steps and algorithm used in the method are detailed.

4.1. Method Description

In the literature, the identification of aspects in an aspect-oriented programming

is most achieved by three approaches (Clone, Cluster and Fan-in analysis) [Barbosa,

2008]. The Clone approach aims to discover the methods in the code that can be clones

of others, i.e., duplicated code. The Cluster approach aims to group patterns of methods

by their execution. For example, if the methods A, B and C are always performed

together, they can be grouped as an aspect candidate. Finally, the Fan-in approach

calculates the fan-in measure of methods to identify aspects, i.e., the approach counts

the number of times the method is invoked by other methods, and when a method is

invoked more times than a defined threshold, it is identified as an aspect candidate.

The approach of this work is to identify aspects in business process model

inspired in the first two software engineering methods (clones and clusters). So, the

proposed method is to identify aspects automatically from event logs by the clone and

cluster approach. The Fan-in approach was not used as inspiration in process model

because it is difficult to define if the frequency of an event in the event log is meaning

that the process has a loop or if it really has a significant meaning as a candidate aspect.

The proposal is based on three assumptions.

 Event logs are structured in XES format. This choice was made

because XES is the standard log format defined by the IEEE process

mining task force. The standard log format was created to be able to be

used by any process mining tool [Van der Aalst et al., 2011].

 The number of different business process logs should be equal or

higher than two, i.e., the method only discovers aspects spread among

processes, not within the same process. So, the assumption is that there is

a minimum of two logs. This assumption was made because the method

looks for aspects among different process logs. In order to address

36

aspects within the same process (i.e., the same process log), it would be

necessary a wide study using natural language processing. It would be

necessary to understand the context of the process and the meaning of the

activities to try to classify process elements as crosscutting concern – to

be able to identify aspects by semantics. However, it would be still hard

to understand whether an event is crosscutting the process or the event is

inside a process loop.

 The logs must present the same level of abstraction of the elements.

For example, if a process about acquiring products has the activities “go

to supermarket”, “buy items in the list”, and “return home”, and the

another related process has the activities “park car in supermarket lot”,

“get cart”, “put milk in cart”, “put bread in cart”, “go to cashier”, and so

on, then the proposed method will not be able to identify aspects due to

the level of the process abstraction (process details) is different. This

assumption exists because the method does not calculate the similarity of

words to discover if one word might have a more abstraction meaning

than another. For example, in Figure 8, the word “items” from the second

activity can be an abstraction for the words “milk”, ”bread” from Figure

9. Besides, similarity calculation between words, to be able to consider

abstraction levels, the method would have to discover how an action

from one activity can mean a set of activities from other processes. For

example, the action “buy” from the activity “buy items in the list” from

Figure 8 can be in an higher abstraction level of activities “get”, ”put”,

“go” from the activities “get cart”, “put milk in cart”, “put bread in cart”,

“go to cashier” from Figure 9. Thus, to simplify the implementation of

the method, the functionally of similarity calculation was not added in

the method first version. Therefore, the method does not control the

input; the success of the output is dependable on the user input.

37

Figure 8 – Acquiring products process more abstract.

Figure 9 – Acquiring products process less abstract.

Figure 8 and Figure 9 illustrate the same process; however, they have different

abstraction levels. For example, the activity “Buy items in the list” from Figure 8

contain the activities “Get cart”, ”Put milk in cart”, ”Put bread in cart” and ”Go to

cashier” from the process of Figure 9. Neither one of the processes is wrong; they only

have their descriptions in different details. Therefore, the method proposed in its first

version has the limitation of not being able to identify aspects from different level of

abstraction.

38

4.2. Method Overview

Figure 10 – Method Overview.

Figure 10 depicts an overview of the method, which first reads the logs and

extracts the process elements. The logs are in the XES format, which it is the standard

log format created by Van der Aalst et al. [2011]. Afterwards, it applies the clone

approach to identify aspect candidates considering elements with same names or

synonym names. Synonym names are analyzed by using natural language processing

and WordNet. The comparison between processes is conducted by pairs. Afterwards,

the third activity is to apply the cluster approach, which identifies aspect groups

considering the order of execution of the aspect candidates identified by previous step.

For example, two or more aspect candidates that are executed in sequence are identified

as an aspect group if the group appears more than a threshold percentage defined by the

user. The final activity is a manual action done by a specialist to decide which aspects

candidates is really an aspect considering the list of aspects candidates identified by the

method. Process mining has reached a certain level of maturity and it has been used in a

variety of real-life case studies, but it still lacks a common framework to evaluate

process mining results. A common means of assessing the results was not developed.

There is no framework to enable a comparison of performance from the process mining

algorithms and to end users evaluate the validity of their process mining results

[ROZINAT et al., 2008]. Therefore, any process mining techniques needs to be

endorsement by specialist to have some validation.

39

4.2.1. Extract Process Elements

The method begins reading the logs using Open XES, an open source library in

Java to store and manage event log data [GÜNTHER et al., 2014]. The implementation

of the use of this library in Java was based in the implementation of the algorithm

presented by Buijs et al. [2013], which identifies a single process model from different

event logs.

The output of this step is a list of unique process elements by log. The algorithm

runs over the XES structure (Section 2.4). The goal is to get the name of each event

from each trace from each log. Therefore, the algorithm runs over a list of logs in the

XES structure extracting the process elements of each log. In the end, the algorithm

returns a list where each position is a list of events of a log. The algorithm is described

in Algorithm 1. In Algorithm 1 the variables with a capital letter X is from the XES file,

that is, it is from the open XES library.

Algorithm 1 – Read XES Files and extract process event names.

Input: List of path to logs files (listPath)

Output: Set of logs with its unique events names (listLogs)

1 Initialize a variable from XES library (xes)

2 Foreach path p in listPath do

3 | Get system current time

4 | Set of XLog structure listXLog = Call xes.readLog(p) function

5 | Create list of log model objects listLog

6 | Foreach xLog in listXLog do

7 | | Create list of events names (listEvents)

8 | | Create an Iterator XTrace traceIter = xLog.iterator()

9 | | While traceIter has next

10 | | | Create a XTrace variable xTrace = traceIter.next()

11 | | | Create an Iterator of XEvent eventIter = xTrace.iterator()

12 | | | While eventIter has next

13 | | | | Create a XEvent variable xEvent = eventIter.next()

14 | | | | Events name = xEvent.getAttributes().get("concept:name")

15 | | | | If listEvents doesn’t contains name

16 | | | | | Add name to listEvents

40

17 | | Add listEvents to listLog

18 Return listLog

19 Get system current time

Algorithm 1 – Read XES Files and extract process event names.

4.2.2. Apply Clone Approach

After loading the logs, the method finds the events that exist in at least two logs

by its names. Since it is probable that equal events has synonym names, it was

implemented the clone approach (discovering semantically similar methods) with

natural language techniques. This method was inspired by the technique proposed by

Richetti et al. [2014], which uses natural language processing to discover process

activities that have similar meaning in order to simplify the declarative process models.

This approach does not take in consideration elements that are semantically similar, but

only synonyms because of the abstraction problem. For example, if there is “Send

invitation” and “Receive invitation” activities in the business processes, the method

verifies if the words “send” and “receive” are synonyms. The method would not classify

these activities as aspects because the words are not synonyms even though the

activities’ names are semantically similar.

The first algorithm of this phase (Algorithm 2) has the goal to tag the events

names by natural language processing (NLP) tags, that is, tagging words to its

grammatical classes (verbs, nouns, adverbs, adjectives, prepositions and others). This

algorithm runs over the list of logs resulting from Algorithm 1 getting unique events

names between logs. It gets all the events names from all logs, not divided by logs like

in Algorithm 1. Afterwards, the algorithm use Part-Of-Speech Tagger functionality

from the Stanford Natural Language Processing Group [TOUTANOVA et al., 2003] to

tag the names. The Stanford part of speech tagger parses a phrase identifying the words'

grammatical classes. To simplify the natural language processing, the algorithm looks

for the first verb and the first noun from each event name, since best practices in

modelling process is to use activities labels composed of one verb and one object (verb-

object style) [MENDLING et al., 2010].

Algorithm 2 – Tag event names.

Input: List of logs from Algorithm 1 (listLogs)

Output: Set of events name tagged by NLP tags (listEventsTagged)

41

1 Create list of string (listDifEvents) to get all unique names between logs

2 Foreach log log in listLogs do

3 | Foreach event evt in listLogs do

4 | Variable eventName = Call listLogs.get(log).getEvents().get(evt) function

5 | If listDifEvents does not contain eventName

6 | | Add eventName to listDifEvents

7 Create list of NlpTag model (listEventsTagged) to get the events names tagged

8 Foreach eventName in listDifEvents do

9 | Variable eventByList = eventName

10 | NlpTag eventTagged = Call AccessStanford.phraseParse(eventByList)

11 | Add eventTagged to listEventsTagged

12 Return listEventsTagged

Algorithm 2 – Tag event names.

Algorithm 2 calls the Algorithm 3 to parse the event name and to receive the

part-of-speech tag. The parser from Algorithm 3 can read various forms of plain text

input and can output various analysis formats, including part-of-speech tagged text,

phrase structure trees, and a grammatical relations (typed dependency) format

[TOUTANOVA et al., 2003]. The Tree is generated by the parse functionality from the

library, which the text’s words are leaves with its respectively grammatical tags.

Therefore, the algorithm runs over the tree structure to get the tag for each word in the

event’s names searching for verbs and nouns.

Algorithm 3 – Stanford phrase parse.

Input: Event name from Algorithm 2 (eventByList)

Output: Event name tagged by NLP tags (eventWord)

1 Function phrase parse using Stanford library access

2 Initialize a variable lexicalized parser from Stanford library (parser)

3 Create a NlpTag object (eventWord) to get the events verbs and nouns

4 Initialize a variable Tree from Stanford library (tree) = parser.parse(eventByList)

5 List of Tree leaves = Call tree.getLeaves() function

6 Foreach leaf in leaves do

42

7 | Variable gramaticalClass = leaf.parent(tree).label().value()

8 | If gramaticalClass is a noun

9 | | Set eventWord noun to leaf.label().value()

10 | If gramaticalClass is a verb

11 | | Set eventWord verb to leaf.label().value()

12 Return eventWord

Algorithm 3 – Stanford phrase parse.

The Algorithm 4 has the goal to find events’ names that are synonyms of others

events’ names. This algorithm runs over the list of events tagged from Algorithm 2

getting the events and its grammatical classes to access synonym functionally from

WordNet. Therefore, to be able to find synonyms, the algorithm use JWI library. The

JWI (MIT Java WordNet Interface) is a Java library for interfacing with WordNet,

which is simple to use and it does not require external libraries or files to run

[FINLAYSON, 2014].

The algorithm runs over the list from Algorithm 2 (list of events tagged).

Algorithm 4 – Get events synonyms.

Input: List of events tagged from Algorithm 2 (listEventsTagged)

Output: Set of aspects (listAspects)

1 Create a list of list of events (listCloneEvents)

2 Foreach event evt in listEventsTagged do

3 | Variable verb = evt.getVerb()

4 | Get synonyms verbSyns = Call JWI.getSynonyms(verb, verb.getTag()) function

5 | Create list of events synonyms (listSynEvents)

6 | Foreach event evt2 in listEventsTagged do

7 | | Variable verb2 = evt2.getVerb()

8 | | If verbSyns contains verb2

9 | | | Variable noun = evt.getNoun()

10 | | | Get nounSyns = Call JWI.getSynonyms(noun, noun.getTag()) function

11 | | | Variable noun2 = evt2.getNoun()

12 | | | If nounSyns contains noun2

13 | | | | Variable firstEventName = evt.getEventName()

43

14 | | | | Variable secondEventName = evt2.getEventName()

15 | | | | Add firstEventName and secondEventName to listSynEvents

16 | Add listSynEvents to listCloneEvents

17 Return listCloneEvents

Algorithm 4 – Get events synonyms.

 The Algorithm 5 consolidates the events found as synonyms and also finds the

events with the same name. In the Algorithm 4, the search for synonyms ignores the

word itself. For example, the synonyms for the verb “print” are [“publish”, “impress”],

not including the word “print”. Therefore, events with the same words will not be found

in the synonym algorithm, but they are present in the list from the Algorithm 1 when it

was found the unique events by log. Therefore, the Algorithm 5 replace in the list of

events from Algorithm 1 all occurrences from one of the events present in the synonyms

list by one of the synonyms. Afterwards, the algorithm recognizes, among the logs,

which events are the same, i.e., it creates a list of events that exist in at least two

different logs. The creation of a new list of events uses the TreeSet java class, which

facilitates the comparison between elements.

Algorithm 5 – Consolidate events.

Input: List from Algorithm 4 (listCloneEvents) and Algorithm 1 (listLog)

Output: Set of aspects (listAspects)

1 Foreach event evtClone in listCloneEvents do

2 | Variable eventNameChosen = evtClone.getName()

3 | Variable evtSynon = evtClone.getSynonyms()

4 | Foreach log lg in listLog do

5 | | List of events by log (listEventsByLog) = lg.getEvents()

6 | | Foreach event evt in listEventsByLog do

7 | | | If evtSynon contains evt

8 | | | | Remove evt from listEventsByLog

9 | | | | Add eventNameChosen to listEventsByLog

10 Create a list of aspects (listAspects)

11 Create a list of all events (listallEvents)

44

12 Foreach log lg in listLog do

13 | Foreach event evt in lg.getEvents() do

14 | | Add evt to listallEvents

15 Create a TreeSet with a comparator of events (allEventsSet)

16 Foreach event evt in listallEvents do

17 | If evt is not added in allEventsSet

18 | | Add evt to listAspects

19 Return listAspects

Algorithm 5 – Consolidate events.

The output of this step (Algorithm 2, Algorithm 4 and Algorithm 5) is a list of

aspects candidates.

4.2.3. Apply Cluster Approach

The cluster approach was inspired by the plugin Pattern Abstractions in ProM.

ProM is an open-source framework for implementing process mining tools in a standard

environment. It also provides process mining algorithms, which includes the Pattern

Abstraction algorithm [VERBEEK, 2010]. It provides a functionality to automatically

discover significant abstractions of the activities and pre-process the log using those

abstractions. The ProM tool was chosen because it is the only framework with a large

list of algorithms available to use. It integrates the functionality of several existing

process mining tools and provides additional plug-ins [VAN DONGEN et al., 2005].

Most of the other tools for process mining are not free and the user does not have the

choice of which algorithm to use. It is also the official framework from

processmining.org. In the ProM framework, it only was found one algorithm of pattern

abstractions (Pattern Abstraction plugin) including the plugins that needs to be installed

from the process mining package manager by the date of this dissertation (September,

2015). The Pattern Abstraction plugin is the implementation of the work of Bose et al.

[2009].

Since this plugin groups activities to make the process more abstract, the method

only does the functionality of grouping, it does not have the abstraction functionality.

So, after the aspects identification by the clone approach, the method seeks to group the

same aspects if they were executed in a sequence. For example, if the clone method

45

finds three aspects (A, B and C), the cluster approach will verify if they were executed

in a sequence in a certain number of cases.

The method receives as input the frequency it is supposed to group. That is, if

the user wants to group aspects that are executed in a sequence above 70%, the

approach verifies if aspect A and aspect B are executed in sequence in 70% of the cases.

If it is true, then the method suggests grouping them. To calculate the frequency of each

aspects found in Algorithm 5, it is necessary to build a linked list of this aspects with

each one of them have a list of events that followed. The Algorithm 6 describes the

logic used by the method to build this linked list.

Algorithm 6 – Building linked list

Input: List of logs from Algorithm 1 (listXLogs) and list of aspects (listAspects)

Output: List of aspects with frequency count (listAspects)

1 Foreach log xlog in listXLogs do

2 | Create an Iterator of XTrace traceIter = xLog.iterator()

3 | While traceIter has next

4 | | Create an Iterator of XEvent eventIter = xTrace.iterator()

5 | | | While eventIter has next

6 | | | | Create a XEvent variable xEvent = eventIter.next()

7 | | | | Event name = xEvent.getAttributes().get("concept:name")

8 | | | | If listAspects contains name

9 | | | | | Variable nextEventIdex = eventIter.nextIndex()

10 | | | | | Create a XEvent variable nextXEvent = xTrace.get(nextEventIdex)

11 | | | | | Event nextName = nextXEvent.getAttributes().get("concept:name")

12 | | | | | Create indexAspect = listAspects.indexOf(name)

13 | | | | | Create List eventsSeq = listAspects.get(indexAspect).getEventsSeq()

14 | | | | | If eventsSeq contains nextName

15 | | | | | | Variable count = eventsSeq.get(nexName).getCount()

16 | | | | | | count = count +1

17 | | | | | | eventsSeq.get(nexName).setCount(count)

18 | | | | | Else

19 | | | | | | eventsSeq.get(nexName).setCount(1)

20 | | | | | listAspects.get(indexAspect).setEventsSeq(nexName)

Algorithm 6 – Building linked list

46

Algorithm 7 describes the logic to group the aspects by its frequency. The

algorithm runs over the list of aspects received from Algorithm 5 recursively. It adds to

each aspect from the list a list of aspects that were executed in sequence after itself.

Algorithm 7 – Clustering aspects

Input: List of aspects from Algorithm 5 (listAspects) and percentage perc

Output: Set of aspects (listClusterAspects)

1 Variable numberTraces = 0

2 Foreach log lg in lisXtLog do

3 | numberTraces = numberTraces + lg.size()

4 Variable frequency freq = perc * numberTraces / 100

5 Create linked list of cluster (listClusterAspects)

6 Foreach aspect aspect in listAspects do

7 | Variable next events eventsAfter = aspect.getEventsSeq()

8 | Foreach event evt in eventsAfter do

9 | | If listAspects contains evt

10 | | | If evt.getCount() >= freq

11 | | | | Create a list of all next aspects (listnextAspects)

12 | | | | Add aspect to listnextAspects

13 | | | | Add evt to listnextAspects

14 | | | | Call recursive function getAspectsSeq(listAspects,listnextAspects,evt,freq)

15 | | | | Add listnextAspects to listClusterAspects

16 Return listClusterAspects

17 Function getAspectsSeq(listAspects,listnextAspects,evt,freq)

18 If listAspects contains evt

19 | Create list eventsAfter = listAspects.get(evt).getEventsSeq()

20 | Foreach event evt2 in eventsAfter do

21 | | If listAspects contains evt2

22 | | | If evt2.getCount() >= freq

23 | | | | If listnextAspects does not contains evt2

24 | | | | | Add evt2 to listnextAspects

47

25 | | | | | Call recursively getAspectsSeq(listAspects,listnextAspects,evt2,freq)

Algorithm 7 – Clustering aspects

The output of this approach is a list of groups of aspects candidates. The output

from the method is two lists. The first list contains the aspects candidates from clone

approach, and other list presents the same aspects but grouped if their frequency is

bigger than the given threshold.

4.2.4. Example of the Method Application

To exemplify the method, consider two logs from the processes described in

Figure 11 and Figure 12. Both processes are related to a school department office from

an university.

The process from Figure 11 represents the steps required for a student to get his

registration. The process begins when the student fills a form indicating what he

requires – in this case, he will require the school registration. The secretary, who works

at the department office, prints the declaration of school registration. Afterwards, it gets

the declaration stamp with the school logo and gets the signature of the responsible for

the department. The final step would be to lay up the form in the student’s folder.

The process from Figure 12 represents the steps to cancel de school registration.

It starts when the student fills the same form as the process to require school registration

declaration, but now requiring the registration cancelation. The director from the school

analyzes the request and grants the cancellation of school registration. The secretary

cancels the registration in the school system and files the form in the student’s

application folder.

Figure 11 - Declaration of school registration process.

48

Figure 12 – Cancellation of school registration process.

The aspect identification method, applied on these two processes, first, reads and

loads the logs. After loading the logs of both processes from the execution of step 4.2.1

(Extract Process Elements), the method starts the aspects identification by the clone

approach. Figure 13 illustrate a snapshot from the event log of the declaration of school

registration process.

Figure 13 – Snapshot of the declaration of school registration process.

49

The second step from the method is step 4.2.2 (Apply Clone Approach), which

runs through the structure created in step one and applies the Algorithm 2. Algorithm 2

tags the events names loaded with noun or verbs tags. For example, the event “Fill

Form” would be tagged with “Fill” as verb and “Form” as noun. The algorithm checks

every unique event name, in such a way, it will not do the same task to the same event

name. That is, the algorithm creates a unique list with the events names and it would

only tag the event “Fill Form” once, and not twice since the same event appears in both

processes. The next step is the Algorithm 4, which seeks the events in the list from

Algorithm 2 that can be synonyms from other events. This algorithm considers the

grammatical classes in which the events were tagged. For example, the algorithm

checks in the WordNet if the other words tagged as verbs (“Print”, “Stamp”, “Sign”,

“File”, “Analyze”, “Cancel”) are synonym of the verb “Fill”. If it finds any match, the

algorithm does the same to the nouns. If it does not find any match for the verb, the

method did not find an event if the same meaning as “Fill Form”. In the process from

Figure 11 and Figure 12, the method would not find any events meaning the same

action. This means that the method would not replace the event name of one of the

found synonyms. However, the Algorithm 5 consolidates the “clone” events by looking

for the events with the same name. For example, the event “Fill Form” from process

requires declaration of school registration is the same of event “Fill Form” from process

to cancel the school registration. In this algorithm, the method would find the events

“Fill Form” and “File Form” as aspects candidates. They are in the end and in the final

of both processes.

The final step of the method is Apply Cluster Approach, which seeks to group

candidate aspects. The input of this step is the output of the previous step (from the

clone approach). This step would receive a percentage of frequency to group by this

frequency. In the example presented, let’s consider 70% as the threshold and that the log

size (total number of traces) is 2000. If any aspects are executed in sequence equal or

higher than 1400 (70% * 2000) times, this approach should recommend to group the

candidates. In the example, this step would check if the “Fill Form” and “File Form”

were executed in sequence in logs traces adding up to 1400 times. The final results of

the method in this example would be the suggestion of two aspects, “Fill Form” and

“File Form” without suggestion of groups. Then, the specialist would decide what to do

with the suggestion. If he would implement them as aspects or not.

50

5. Case Study

5.1. Scientific Methodology Approach

The analysis of the literature reports the extent, type, and nature of current

organizational problems. These problems are the basis to formulate a research problem.

The definition of research problem is a phenomenon which the researcher wishes to

explain or predict. The analysis of the literature also reports where there are gaps of

knowledge about a particular problem. This assists in identifying an important research

question. This dissertation research question is: “How to identify automatically aspects

in business processes?”.

After the specification of the research question, the next step is to plan the

actions to answer the question. The action plan is called research design. Research

design is the planning for the collection, measurement, and analysis of data. All research

design types include observations, induction and deduction [RECKER, 2012].

The research design method suitable for this work according data, risks, theory,

feasibility and instrumentation is the qualitative method. The qualitative method

includes procedures which consist of research methods such as case study, ethnography

or phenomenology. It is designed to assist researchers in understanding phenomena in

context. Case study is the most popular form of qualitative methods and well-

established published approach to research in information systems research and other

social sciences, particularly business management. A case study is commonly used to

investigate a contemporary phenomenon within its real-life context [RECKER, 2012].

A proof of concept is a demonstration, the purpose of which is to verify that

certain concepts or theories have the potential for real-world application. Therefore, it is

a prototype that is designed to determine feasibility, but does not represent deliverables

[RECKER, 2012].

The scientific methodology approach used in this work is composed by 4 stages.

In the first stage, the research problem and the hypothesis were defined, and the solution

approach was designed. At the next stage, a theoretical background research was studied

and described, looking for existing techniques to be compared or inspiration to be used

in the proposed solution. In the following step, the solution was implemented. In the

third stage, a proof of concept was performed to do an initial evaluation of the method.

51

The evaluation corresponded to a comparison of results from an example of the

literature. That is, the processes chosen were the same used by Tavares and Marinho

[2014] to check if the method identifies the same aspects identified by the experts in

[TAVARES et al., 2014]. The fourth stage was the real life events case study. This case

study was aimed to evaluate the proposed method using real life events logs and experts

to access the results of the method execution over them. The results from both case

studies (proof of concept and real life case study) are presented in the following

subsections.

5.2. Proof of Concept

For the proof of concept, it was used the business process models from an

administrative department of a university. The department is part of the Center of

Sciences and Technology of the University of the State of Rio de Janeiro (UNIRIO).

The processes correspond to services provided to students. They describe the steps that

compose the interaction among actors (student, office, school director), for example, to

get a second call of a test, to break discipline requirements, to get transferred in or out

of the school, etc.

The processes were already modeled, however the method proposed receives

logs as input, so it was used a tool (BIMP simulator - http://bimp.cs.ut.ee/) to simulate

them, i.e., to generate synthetic logs corresponding to that processes’ models. The two

processes chosen were the same used by Tavares and Marinho [2014] in order to be able

to make a simple initial evaluation – comparison of aspects found by the method against

the ones previously found by Tavares and Marinho in their work. However, the process

models simulated was remodeled to be an acceptable input for the simulation tool. It

also has a different modeling, which it was used to demonstrate an example of different

abstractions levels. Tavares et al. [2014] propose improvements to the business process

modeling notation from Cappelli et al. [2010] that uses the aspect orientation. In their

work, they identify manually aspect from two processes to exemplify their proposal.

Even though it is not the same process model, it is the same process by which the

aspects identified should be the same.

The first process represents how a student obtains a discipline program. A

discipline program presents the content of the discipline including the bibliographical

references, themes and topics to be developed. The second process represents how the

52

student can require the school record. Both processes represent the path the student has

to follow to obtain those services at this university department. Figure 14 and Figure 15

illustrate the two processes.

Figure 14 – Require discipline program process.

Figure 15 – Require school record process.

Figure 14 represents the process to require the discipline program. The discipline

program process starts when a student fills the form. In the next step, the secretary

prints the discipline program. Afterwards, the secretary checks if the student is approved

in the required discipline. If the student is approved, the secretary stamp and sign all the

files. If the student is not approved, the secretary skips the stamp and sign activities.

Finally, the secretary files the form in the students’ application folder.

Figure 15 represents the process to require the school record. This process is

very similar to the discipline program process. It also begins with the student filling the

form. The secretary prints the school record, stamp and signs all the files, and, finally,

she files the form.

53

It was used a log simulator (BIMP Simulator [DUMAS et al., 2013]

[SIGNAVIO, 2014]) to create a synthetic log to test the method implementation. BIMP

Simulator is a research prototype available as a part of the modeling platform of the

BPM Academic Initiative. This tool allows simulating complex real-world business

processes in large-scale scenarios. The system was designed and implemented by

Dumas et al. at the University of Tartu [SIGNAVIO, 2014]. This simulator takes as

input a BPMN process model in XML format produced by other process modeling tools

such as Signavio Process Editor or OpenText Provision (format .bpmn or .vsdx)

[DUMAS et al., 2013]. This simulator was chosen because it has as input a BPMN

process models and the two processes were modeled with the Signavio tool, which is

possible to export the process as .bpmn for the simulator.

Figure 16 illustrates an extract of the log generated. The log has 9170 entries.

Tag log (line 1) represents the log itself, whereupon it contains the tags trace that

contains the tags events. Also, there are the tags of characterization of the log, e.g., the

tag global defines constraints, i.e., what information each elements of the log must have.

In Figure 16, there are two global definitions, one to the trace scope (lines 6 to 8) and

other to the event scope (lines 9 to 16). The global definition of trace is requiring that

each trace in the log contains a name. The global definition of event is requiring that

each event in the log contains a name, a lifecycle transition, resource, timestamp and

activity. After the tags of the log characterization, there are the traces tags that contain

the events tags. In Figure 16, there is a tag trace with the attribute name and creator

which contains 4 events tags (lines 22 and onwards). The first event tag contains

“discipline program required” as value from the name field, and it has the others

attributes (line 25).

54

Figure 16 – Generated log.

Based on the logs generated for these two processes by BIMP tool, the proposed

method extracts the events from the log following the algorithms presented in Chapter

4. The output of this step is a list containing all the events by log. It is extracted all the

events in the log and store by its log so that it can be known each event is from. The list

of events by log: “Discipline program required”, “File Form”, “Discipline program

obtained”; and from the other log: “School record required”, “Fill Form”, ”Print School

Record”, “Stamp all Files”, ”Sign all files”, “File Form”.

The next step is the clone approach, which runs through the list searching for

equals and synonyms events. In this case, this approach found four aspects candidates

(“Fill Form”, “Stamp all files”, “Sign all files” and “File Form”).

55

The final step from the method is to apply the cluster approach, which runs

through the logs searching to group the aspects candidates found by the previous step

(the clone approach). In this case, the threshold to seek the aspects that were executed in

sequence was seventy percent. That is, the cluster approach search through the log

checking if the four aspects (“Fill Form”, “Stamp all files”, “Sign all files” and “File

Form”) were executed in sequence for more than seventy percent of the traces. Since the

log size simulated had 200 traces each, the frequency of 70% is equivalent to an

appearance of 280 ((200+200) * 70%) times. This approach found two cluster aspects.

One group containing three aspects (“Stamp all files”, “Sign all files” and “File Form”)

which can be grouped as one aspect, and the second group found contains two aspects

(“Sign all files” and “File Form”) which can be grouped as one cluster aspect. If the

threshold is one hundred percent, the method could still find the four aspects from the

clone approach, but it did not find any cluster aspect. This results that both cluster

aspects candidates found with a seventy percent frequency were not always executed in

sequence. There were traces in the log, instances of the processes, where these aspects

were not followed by one another.

The final results of the proposed method for this proof of concept using the

business process of an administrative department of an university illustrated in Figure

14 and Figure 15 were four aspects. It also recommends grouping three or two of these

aspects, but with a seventy percent frequency that they are executed in sequence.

These processes were chosen as the same from Tavares and Marinho work in

order to compare the results of the proposed approach to their proposal. Tavares and

Marinho [2014] used these two same processes as examples to propose improvements

on the AO-BPM notation. Although it is the same process, they used different process

models, their models from obtain the discipline program and require the school record

were more detailed, i.e., their models have more activities describing the process. The

processes models used in this work were the processes from a different project, which

all processes from the school office was modeled. Even though the process models are

different, it was the same process used by Tavares and Marinho. Figure 17 illustrates

the require discipline program process model used by Tavares and Marinho. Making a

comparison of the process used in the proof of concept (Figure 14) with the process

used by Tavares et al. [2014], it can be seen that the process in Figure 17 has more

details. These details are a more specific activity description like the activity “Wait

student to pick up document”. It also has as detail the use of the data object “Discipline

56

program”. Finally, it has the details of an extra actor (Director), which in the process

from Figure 14 was implicit and subsumed in the office action. The same level of

details are also presented in the require school record process.

Figure 17 - Require discipline program process from Tavares et al. [2014]

In their work, they found seven aspects (“Deliver form”, “Request director

signature”, “Stamp document”, “Sign document”, “Return document to the office”,

“Remove document from the office”, “Wait student to pick up document”), wherein the

aspects “Request director signature”, “Stamp document”, “Sign document”, “Return

document to the office” are grouped as one aspect and “Remove document from the

office”, “Wait student to pick up document” are also grouped in another aspect.

The aspects found in this proof of concept by the method proposed could

correspond to the aspects modelled by Tavares and Marinho’s work [2014]. Doing a

simple interpretation of the aspects identified by both works, it could claim that the

aspect “Fill form” corresponds to the same activity “Deliver form” from Tavares and

Marinho’s processes. The same with the group “Stamp all files”, “Sign all files” and

“File Form” that might corresponds to “Request director signature”, “Stamp document”,

“Sign document” and “Return document to the office”. Since the used process model

did not have details about how the student get the required document, the method could

not find the aspects corresponding to “Remove document from the office” and “Wait

student to pick up document” from Tavares and Marinho’s work. The process models

used in the proof of concept were not the same from Tavares and Marinho’s work

57

because the difference from the same processes shows the abstraction level problem.

The proposed method uses process logs as input; the process models in Figure 14 and

Figure 15 are only to illustrate the process. It was used a tool to simulate the process to

create a synthetic log, since it is a tool from a known project (BPM Academic Initiative)

and the log is created randomly, the results can be considered positive.

This initial study shows that the method proposed in this work could help in

aspect identification process. However, the details from the processes affect the results.

That is, the level of abstraction from the processes should be the same this method

work. For example, if it was used one process from Tavares and Marinho’s work and

one process from this work, the method wouldn’t discover any aspects because the level

of details from the processes are different. The evaluation of this method was

qualitative, dependent of specialist opinion to check if the aspects found were accurate.

However, this initial results show that our method could have been used by Tavares and

Marinho’s work to assist and to facilitate the aspects identification.

There are some limitations of this study, for example the process context. The

aspects found can only be confirmed as aspect in the context from the loaded logs. It is

possible that could have more or less aspects than the aspects found if you consider

different context or processes. For example, maybe considering different process of the

school office as the transfer of a student, the event “Sign all Files” is not present. This

would result in the method not identifying it as an aspect. Therefore, the validity of the

study is dependent of the context from the logs loaded.

This proof of concept has some threats to the validity of the method. The use of

simulated logs of trivial processes rather than using actual logs of complex processes is

one threat, but the next section shows the method using real-life logs. The last threat is

the way activities labels are written. This proposal assumes activities labels written

accordingly to good practices, such as verb plus noun. If the labels are not written in

this format, the step from finding synonyms from the method will not be able to tag the

words, resulting in not finding aspects or decreasing the method accuracy.

5.3. Real Life Events Case Study

This case study has the goal to evaluate the method in a real life scenario. It

consists in executing the proposed method to identify aspects from a real life event logs.

The results obtained with the method executed were then accessed by specialists in two

58

stages. The first stage was to ask the interviewees to identify aspects from the process

models generated from the logs. The second stage was to compare the aspects found by

the specialist with the aspects found by the method application. The evaluation covers

the specialist opinion about the results and the data collected from the observation over

the interview. In the literature study, it was not found works which used events logs to

identify aspects. It was not used precision and recall as evaluation because there is not a

similar work to be used as an answer.

5.3.1. Event log pre-processing scenario

The real life events log used was from the Business Process Intelligence

Challenge 2014 (http://www.win.tue.nl/bpi/2014/challenge). This data set represents the

log information from the execution of ITIL processes in a Dutch bank. ITIL

(Information Technology Infrastructure Library) is a set of practices for information

technology service management, which focus on aligning IT services with the business

needs [ARRAJ, 2010]. This events log was generated by the bank system logging theirs

steps. It is not an events log generated by system created from business process models,

e.g. systems created through BPEL (Business Process Execution Language). The

method from this work can have as input any events logs since it follows the XES

standard. Therefore, events logs generated by BPEL can be used in this method.

The data set contains four data sets, which it was loaded in one SGBD to be

analyzed. The four data sets are the interactions records, incidents records, activities of

the incidents records and the changes records. The relation between these sets is once

the helpdesk service call is created, it is an interaction record. If this interaction occurs

two times or more, it becomes an incident. The dataset activities of the incidents record

provides the information of the actions executed of the incident created (name, date,

assignment group – who did the task) and the change record is the dataset which records

the change in a system service. The change record dataset was not used. A subset of this

dataset was selected to be used in this case study. The first filter was to select only the

interaction that has the category as incidents occurrences because it is the process with

most occurrences from the whole dataset. The final filter was to select only the

interactions with status marked as closed, which still continues as the most occurrences

of the dataset. These filters were applied to unify data from the same process and to

reduce the volume of data. A snapshot from the datasets is in Appendix IV. The dataset

of interactions has 147005 records which contain 17 fields: Configuration Item Name

59

Affected, Configuration Item Type Affected, Configuration Item Subtype Affected,

Service Component Affected, Interaction id, Status, Impact, Urgency, Priority,

Category, Knowledge Document Number, Open Time, Close Time, Closure Code,

First Call Resolution, Handle Time and Related Incident. The dataset of incidents has

46607 records with 28 fields. The fields are the same of interaction minus the first call

resolution field and plus the fields: Reopen Time, Resolved Time, Alert Status, Number

of Reassignments, Number of Related Interactions, Related Interaction, Number of

Related Incidents, Number of Related Changes, Related Change, Configuration Item

Name Caused By (the item which caused the service disruption), Configuration Item

Type Caused By, Configuration Item Subtype Caused By. Finally, the incident activity

dataset has 466738 records with 7 fields: Incident ID, Date Stamp, Incident Activity

Number, Incident Activity Name, Assignment Group, Knowledge Document Number

and Interaction ID. Table 3, Table 4 and Table 5 are a snapshot from the respectively

dataset. In the SGBD, it was select all interactions that have the classification of

incident and with status closed. Afterwards, to be sure that only have interactions that

resulted in creating an incident, it was made an analysis checking the interaction by its

ids with the incidents id. This last filter decrease error of interactions classified

incorrectly and it also makes sure to use only incidents related to an incident. It was not

necessary to use the log with all of the information in the method, thus the only

information used after the filters was the fields presented in the incident activity dataset

(Incident id, date stamp, incident activity name and assignment group). The method

only needs the minimum information required by the XES format (case id, date stamp

and activity name). One important observation of this dataset is the name of the

activities. They do not represent the action taken by the company assignment group;

they represent the action taken in the incident record in general. For example, the

activity name “update” say that the record was updated, but do not say what information

was updated. This lack of detail could be because the company did not want to make

their processes information too public. Therefore, the log information released is a little

abstract.

According to Reichert et al. [2015]: "Usually, there exists a multitude of variants

of a particular process model, whereby each of these variants is valid in a specific

scenario or in the context of a particular business objective (Lohrmann and Reichert

2012); i.e., the configuration of a particular process variant depends on concrete

requirements building the process context (Hallerbach et al. 2008b). Regarding release

60

management, for example, we have identified more than twenty process variants

depending on the considered product series, involving suppliers or development phases.

Similar observations can be made with respect to the product creation process in the

automotive domain for which dozens of variants exist. Thereby, each variant is assigned

to a particular product type (e.g., car, truck, or bus) with different organizational

responsibilities and strategic goals, or varying in some other aspects.". Therefore, the

divisions of incidents are variants of the helpdesk service as a whole, but it can be

classified as a specific process by its service component.

The method proposed assumes the existence of at least two logs. To fulfill this

assumption, the dataset was divided by service component to create specifics processes.

That is, the incidents were divided by the service components they affect. The most

common services are “WBS000263”, “WBS000073”, and “WBS000091”. Therefore,

the whole log file represents a generic process, but it also contains specifics process for

each one relates to one specific service component. Then, the preprocessing was to

create separated log files for each one of the three most common services.

Beyond this division by service component, the process model generated was

still too big to be understood and analyzed. The log is extensive and it has incorrect

records, i.e., incomplete traces or incidents store wrongly (noise). And since it is also

based on the idea that the evaluation of the results would be with specialists, the logs

were filtrated with only 5% of variants. That is, the processes model generated

represents the most executed process, with only 5% of variants. Figure 21, Figure 22

and Figure 23 represents the model of the process for each service component. The

models were extracted from the log using the Fuzzy miner algorithm [GÜNTHER et al.,

2007] using the Disco tool (https://fluxicon.com/disco/).

Disco was chosen this time instead of ProM because of its simplicity, usability

and performance when dealing with huge logs [RUBIN et al., 2014]. In the ProM

framework the log from this case study took minutes to load, as the same file in Disco

took seconds. However, the Disco tool does not give the option of choosing which

algorithm to use unlike the ProM framework which provides a list of algorithms with

multiples functionalities. Disco is a commercial product that uses the fuzzy miner

algorithm to create a process model. The Fuzzy miner algorithm was the first to directly

address a large number of activities. It also is recommend to use when you want to

simplify the model in an interactive manner [GÜNTHER et al., 2007]. The Disco user

61

interface is also more friendly, being easiest to use the variants filter functionality to

divide the log by service component.

After the filtering by record type (incident) with the category as closed and

divided by the services component, the process of service “WBS000263” has ten

activities, the process of “WBS000073” with nine activities and process of

“WBS000091” with fourteen activities. The process model for “WBS000091” is

presented in (Figure 21), the process model for “WBS000263” in (Figure 22), and the

process model for “WBS000073” in (Figure 23).

5.3.2. Proposed method execution

Based on the logs extracted for these three processes, the proposed method

extracts the events from the log following the algorithms presented in Chapter 4. The

output of the first step was a list containing all the 33 events. The next step is the clone

approach, which runs through the list searching for equals and synonyms events. The

method was implemented to find clone events corresponding the ones existing in all

load processes, i.e., a listed event has to occur in all three processes to be considered as

an aspect. This feature can be configured by the user. This step found 7 aspects (“Start”,

“Caused By CI”, “Closed”, “Open”, “Assignment”, “End” and “Status Change”). The

cluster algorithm, considering a threshold of 70%, finds one group of aspects (“Start”

and “Open”). This means that the initial event “Start” from the process and the activity

“Open” are executed in sequence more than 70% of the traces of the log. If the

threshold goes down to 10%, the cluster approach finds 12 possible groups. Figure 18

illustrates the console output of the 12 groups. It is important to observe that the method

looks for events in the log that has name. This means that the candidate aspects “Start”

and “End” are the initial and end event of the process model, and not an activity. This

observation will be discussed in details in the evaluation.

62

Figure 18 – Output of aspects exclusively by cluster approach with 10% threshold.

The configuration of exclusively find aspects in all logs can be changed. If this

feature is changed to identify in any logs, not being exclusively to all logs loaded, the

clone approach finds 12 aspects (“Start”, “Open”, “Closed”, “Caused By CI”, “End”,

“Status Change”, “Assignment”, “Reassignment”, “Update”, “Operator Update”,

“Description Update” and “Resolved”). In this case, the cluster approach with 70% of

threshold found one aspect groups (“Start” and “Open”). If the threshold would be 10%,

the groups found are still the 12 found from Figure 18. However, if the threshold goes

to 5%, the cluster approach finds 16 possible groups.

Figure 19 – Output of aspects not exclusively by cluster approach with 5% threshold

63

The method result used to do the comparison evaluation is from the

configuration with not exclusivity, that is, the identification of aspects is done in at least

two logs and not limited in all logs. And the initial threshold would be 70% because it

means that a significant number of times that the aspects were executed in sequence; it

would be a relevant frequency. However, due to the size of this logs (3073 traces), the

threshold used was 10%. This was the bigger percentage established for the method to

find aspects groups besides the “Start” and “Open” group. This change was made

because the process model does not show how frequent the path from one element to

other element was done. Even though the logs only have 5% of variants, it is still a lot

of different paths. Therefore, the limit to find groups of aspects executed in sequence

can be low.

5.3.3. Evaluation by specialists

The evaluation for this real life log events is qualitative based on the experience

of professionals with the business process management and aspects.

It was asked to all the interviewees to identify aspects from the process model

generated from the logs, since to ask a human to identify from the logs files is

unfeasible. The difference of identification from models and logs brings assessment bias

to the evaluation. One bias is that the models not always show all the elements

presented in the log. Another bias is that the model also does not show how many times

sequence of events were done during a period of time. For example, the actions of

grouping aspects made by the interviewees were basically identified by the semantic of

the activities, and not by the frequency they were executed. Other bias can be the

induction of not considering elements from the process model, for example, only one

interviewee identified a gateway as a possible aspect; the others only payed attention to

the activities.

The most complaint problem by the interviewees was to understand the process.

Since the process model was generated from a process mining algorithm, the process

model has some connections that the same process model by a human would not have.

For example, after the activity “Closed” were some paths to the beginning of the

process. Other problem was the name of some activities as events. For example, there

are some activities that actually are events, but the log is recorded incorrectly; the

activities “Resolved” and “Caused by CI” were one of this kind of problem reported by

the interviewees.

64

5.3.4. Interviews

Three professionals were invited for this case study. Regarding the concept of

aspect, all interviewees reported knowledge about it. They all reported knowledge of

aspect in business process management, but only one of them knows aspect-oriented

programming. The first step of the interviews was to explain the process. Then, the next

step was to ask them to identify in the process model what they would consider aspect.

5.3.4.1. Interviewed #1

The first interviewed has 3 years of experience working with business process

management and he did not have contact with aspect-oriented programming; however

he is familiar with the concept of aspects in process models. He classified his

knowledge in aspects as intermediate and he had a good knowledge from the log used

because he had worked with it in the past. The first action of this interviewee was to

look for activities that were present in all model processes. He only considered

activities. His next step was to look for semantically similar activities. This interviewee

in particular did not group aspects by its sequence, only by its semantic. For example,

he identified the activities “Operator Update”, “Update” and “Description Update” as

one aspect of update information. He was in doubt if the “Open” and “Closed” activities

could be grouped as one aspect of the control of the beginning and ending from the

processes. As the final results, this interviewee found 6 aspects, for which he grouped

and named. The aspects are:

1) Opening – Activity “Open”

2) Closing – Activity “Closed”

3) Designation – Activities “Assignment”, “Reassignment” and “Update”.

4) Communication with client – Activities “Mail to Customer” and

“Communication with Customer”.

5) Update status – Activity “Status Change”.

6) Update information – Activities “Update”, “Description Update” and

“Operator Update”.

When asked about the aspects found by the method, the interviewee agreed with

some of the results. He did not agree by the “Cause by CI” and “Resolved” because they

are events and not activities. However, he did not consider this as a problem of the

method, but a problem of the log that probably has a wrong information. He also

observed that the activity “Update” is lacking an object to be with compliance of the

65

good practices of verb plus object. He agreed with cluster approach of grouping by the

frequency presented in Figure 18, but removing the activities “Caused by CI” and

“Resolved”.

However, he expected that the method could had found the aspect

communication with client (activities “Mail to Customer” and “Communication with

Customer”). He also expected that the method have the functionality of grouping

activities by its similarity and not only by frequency. Finally, he agreed with the “Start”

event and “End” event as aspect and he recognizes that he did not pay attention to other

elements but activities.

5.3.4.2. Interviewed #2

The second interviewee has 1 year experience working on business process

management, but he has 6 months of experience with aspect-oriented programming. He

had a 4 months of experience with aspects in process models. This interviewee

classified his knowledge in aspects as basic. In comparison with the first interviewee,

this person did not make assumptions that the activities “Assignment” and

“Reassignment” are the same action. He afirmed that since he did not know the process

very well he could not make this assumption. Since he had worked with aspect in

programming, he only identified aspects that could be executed automatically, without

human intervention. For example, he did not consider the activity “Open” as an aspect

because it needs a manual behavior. He focused on the reuse heuristic to identify

aspects. This interviewee found 3 aspects, they are:

1) Activity “Closed”

2) Activities “Update”, “Assignment” and “Status Change”

3) Activities “Update”, “Reassignment” and “Status Change”

This interviewee also complaint about parts of the process that do not make

sense for him. When asked about the aspects found by the method, this interviewee also

did not agree with the identification of the “Cause by CI” and “Resolved”. The

researcher argued about why the activities could be manual and the interviewee agreed

that the tasks could be made by human, but he pointed that he had the line of reasoning

from the software engineering. After this conversation, the interviewee agreed that the

aspects found by the method (“Start”, “Open”, “End”, “Operator Update”, “Description

Update”) could be considered aspects. He also agreed with the group of aspects found

by the frequency (Figure 18), but again, like the first interviewee without the activities

66

“Cause by CI” and “Resolved”. Even after the agreement of aspect could be manual

activities, this interviewee did not consider to group activities by the semantic similarity

(different than the first interviewee).

5.3.4.3. Interviewed #3

The third interviewee has 7 years working with business process management

and he had no contact with aspect-oriented programming, but he had already worked

with aspects in process models. This interviewee classified his knowledge in aspects as

intermediate. This interviewee was in doubt about the level of abstraction, if he could

assume that some activities are the same or if it could abstract an activity to include

others activities. He did not know where to draw the line (limit) of the abstraction for

reuse. For example, if he could consider the activity “Update” an abstraction of the

activities “Operator Update” and “Description Update”. He argued that if he considers

some abstractions to the limit, everything could be an aspect. However, he considered

the activity “Assignment” the same as the activity “Reassignment”. This interviewed

had work experience with aspects in process model, but in a different notation – EPC

(Event-driven Process Chain) and not BPMN. Therefore, he observed a lack of

information in the model (data objects as input/output of activities, business rules, data

store, business requirements etc.). He also found difficult to understand the process.

This was the first interviewee to consider elements apart from activities. This

interviewee found 14 aspects, which are:

1) Activity “Open”

2) Activities “Assignment” and “Reassignment”

3) Activity “Operator Update”

4) Activity “Update”

5) Activity “Status Change”

6) Activity “Closed”

7) Activities “Communication with Customer” and “Mail to Customer”

8) Activity “Description Update”

9) Gateway before the activities “Communication with Customer” and “Mail to

Customer”

10) Gateway after the activity “Closed” and before the end event

11) Group of activity “Closed” with gateway from item 10).

67

12) Group of activities “Status Change”, “Communication with Customer”,

“Mail to Customer” with the gateway from item 9).

13) Group of activities “Open” and “Assignment”

14) Group of activities “Open”, “Assignment”, “Reassignment”, “Operator

Update”, “Update” and “Description Update”

As the others interviewees, this third interviewee did not agree with the aspect

“Caused by CI” and “Resolved” from the method. Another disagreement was the

aspects from the gateways. And one doubt that this interviewed had was if the aspect of

“Communication with Customer” and “Mail to Customer” could be considered the same

activity. He was in doubt because he did not know how the process works enough to

affirm if it is relevant that one of the communications is specific by mail and other

activity can be by any other communication mean. He also agreed with the aspects

found by the cluster approach from the method (Figure 18), but again without the

activities “Caused by CI” and “Resolved”. This interviewee was the only one to identify

groups of aspect by its sequence in execution, not only by its semantic similarity.

5.3.5. Discussion

All the interviewees shared some observations. The first point is that some parts

of the process are hard to understand. The second one is that there are mistakes in the

process model; two activities have names that mean events and not actions (“Resolved”

and “Caused by CI”). Finally, they all agreed that it was the difficulty to know in which

step to stop the abstraction to identify aspects. Two of the interviewees think that if one

abstracts in some level the activity, it would become an aspect.

The most different results were the groups suggested by the cluster approach.

Two of the interviewees grouped by its similarity, but the third one that grouped by its

sequence had also different results. It can be inferred that the results are different

because the process model do not show how frequent that path was taken. This

information could be added to the process model, but it would not follow the guidelines

of the BPMN notation. This way, the process model can induce to group aspects that

were only taken one time in over one hundred traces (1% of frequency). Using a

threshold of 10% to the cluster approach, the suggested aspects groups are more similar

than the groups identified by the interviewees. It was this group of suggestion that was

used in the case study (Figure 18). If the threshold had been 1%, the method would have

found 34 suggestions of groups. Figure 20 illustrates the list of these 34 groups.

68

Figure 20 – Output of aspects exclusively by cluster approach with 1% threshold

This real life events case study shows that the method can help specialist by

suggesting aspects. All of the interviews yield different results. For example, the

interviewed #1 and #3 found “Open” as aspect, while interviewed #2 did not. There are

bigger differences, as interviewees #1 and #2 did not consider other elements as aspect

beyond activities. Interviewee #3 considered the element gateway with the same

decision taking as aspect. Another difference was the clustering of aspects none of the

clustering was equal. For example, interviewee #1 clustered “Assignment”,

“Reassignment” and “Update”, while interviewee #2 clustered “Update”, “Assignment”

and “Status Change” and interviewee #3 clustered “Assignment”, “Reassignment”.

These clusters are very similar, but different nonetheless. This emphasizes the

subjective problem of human identification.

They all agree with the aspects found by the method can be actually an aspect.

There were some aspects that the method did not find. It was the case of the

identification of activities with similar meaning (i.e., “Communication with Customer”

69

and “Mail to Customer”). The next step for the method is to figure out how to add this

functionality to improve the results.

However, there were aspects found by the method that were not found by the

interviewees (i.e., “Start”, “End”). The interviewees agreed with these aspects and the

justification for this gap is that they did not think to consider events. Besides the

subjective problem, this is another advantage of the use of the method. Table 2 presents

the comparison from the aspects found by the method with the aspects found by the

interviewees.

The aspects found by the interviewee #1 and #3 are the elements which matches

to the definition of aspect – modularization of crosscutting concern. They identified as

crosscutting concerns elements repeated several times, elements used by different others

elements, elements that can be reused in others domains, and elements that are

independent of others elements. Accordingly to Table 2, the method could identify most

of the aspects between these processes.

Besides the problems found and the threats listed to the validity of the method,

there are others factors to consider as the method limitation. The tagging from the

method is not always successful. There are some words that the library cannot tag, this

results with words tagged null and the rest of the algorithm cannot find synonyms. This

error can affect the method accuracy.

The factor that it also needs to be considered is the limitation of the topic of the

processes loaded. The method finds aspects considering event existence in all loaded

processes. Therefore, it is possible that are aspects in one process, which it is not

present in the others processes, that it will not be identified. However, besides the

limitations, threats and problems, the interviewee’s opinion is that the method can help

specialists to find aspects.

70

6. Conclusion

Elements used in business process models can be scattered (repeated) within

different processes, making it difficult to handle changes, analyze process for

improvements, or check crosscutting impacts. These scattered elements are named

Aspects. Similar to the aspect-oriented paradigm in programming languages, in BPM,

aspect handling has the goal to modularize the crosscutting concerns spread across the

models.

The use of aspects in models of business processes improves the process

modularization, facilitates maintenance, understanding, modeling and reuse parts of the

process. Therefore, it facilitates management of the process. However, it is a new field;

so, the existing approaches of aspect-oriented models in BPM are being developed

following different lines of work. In existing approaches, the identification is performed

manually, resulting in the problem of subjectivity and lack of systematization.

In the literature, the identification of aspects in an aspect-oriented programming

is most achieved by three approaches (Clone, Cluster and Fan-in analysis) [Barbosa,

2008]. The Clone approach aims to discover the methods in the code that can be clones

of others, i.e., duplicated code. The Cluster approach aims to group patterns of methods

by their execution. The approach of this work is to identify aspects in business process

model inspired in the first two software engineering methods (clones and clusters).

6.1. Contributions

This research proposed an approach for automatic identification of aspects from

event logs (the process as it was executed – as-is – and not how it should have been

executed – to-be). The method is based on mining techniques and it aims to solve the

problem of the subjectivity identification made by specialists. Jalali [2014a] pointed out

that the mining techniques to discover duplicated activities within one process are an

ongoing research with many open questions. This dissertation developed a solution to

fill this gap by discovering aspects among different processes. The method contribution

is that it defined aspects from the event logs point of view based on software

engineering techniques.

71

The method assumes at least two logs files as input. Another assumption is the

log format, which it needs to be XES (standard format define by IEEE process mining

task force [Van der Aalst et al., 2011]). The last assumption is the level of abstractions

between the processes are the same.

At first, the method reads the logs and extracts the process elements. Then, it

applies the clone approach to identify aspect candidates considering elements with same

names or synonym names. Afterwards, the third activity is to apply the cluster

approach, which identifies aspect groups considering the order of execution of the

aspects candidates identified by the previous step. The final activity is a manual action

done by a specialist to decide from the list of aspects candidates provided by the method

which aspects candidates is really an aspect.

The results from the proof of concept and real life logs presented in chapter 5

show that the proposed method can be used to assist specialist to identify aspects

through mining the processes logs. Therefore, the results from the method are positive

about aspects identification.

6.2. Limitations and threats

The first implementation of the method has limitations and threats. The first

limitation is not being able to identify aspects from different level of abstraction. The

second limitation is the process context. The aspects are found among the log files

loaded. This feature makes the aspect identification dependent of context. The method

finds aspects considering event existence in all loaded processes. It is possible that the

aspect found from log #1 and log #2 is not present in log #3. Therefore, if loaded only

log #1 and log #3, the aspect found between log#1 and log #2 will not be identified.

Accordingly, this results that the validity of the study is dependent of the context from

the logs loaded. The basic limitation of the method is that depends on events logs, i.e.,

the method only can be used in processes which generate events logs.

There are also threats to the method. One threat is the manner the events names

are written. The method uses natural language processing in its implementation.

Therefore, the method takes in consideration the good practices to name activities in

business process management. This good practice is the name is verb plus noun, verb

plus object [MENDLING et al., 2010]. Another threat is the tagging task. The tagging

used in the method is not always successful. Sometimes, the library used cannot part-of-

72

speech correctly or the library cannot tag the word. This result in words tagged as null,

impairing the algorithm, leading in not finding synonyms. This error decreases the

method accuracy. The basic threat is the quality of the events logs, i.e., if the events logs

load does not follow the good practices for names and structures, the method will not

generate a good output.

6.3. Future Work

The solution developed is a technical method to identify aspects in business

process management without depending on experts. The results are optimistic and for

future work would be developed the analysis fan-in approach. Another future work is

semantic analysis of the names of the activities reducing the complexity of synonyms

algorithm and improving its specificity. It also calculates semantic similarity to find

abstractions. That is, to identify activities that cover the meaning of others activities.

Besides, there is the analysis of activities relations, such as successors and their

predecessors of the activities as a way to prioritize the search for aspects.

Another future work is to include this method on process mining tools to provide

access to it and to support the identification of aspects in business process management.

This future work is the development of a ProM plugin. The plugin will be able to

identify aspects from event logs loaded in the framework.

In additional of the future work of implementations, new case studies must be

done with different logs (dataset) and domain experts to improve the method evaluation

and to have future improvements features.

73

References

ARRAJ, V. 2010. "ITIL®: the basics." Buckinghampshire, UK.

AZEVEDO, L.G.; SANTORO, F.; BAIAO, F.; SOUZA, J.; REVOREDO, K.;
PEREIRA, V.; HERLAIN, I. 2009. “A Method for Service Identification from Business
Process Models in a SOA Approach”. In T. Halpin et al., eds. Enterprise, Business-
Process and Information Systems Modeling. pp. 99-112.

AZEVEDO, L. G.; BAIAO, F.; SANTORO, F.; SOUZA, J. F. 2011. “A Business Aware
Service Identification and Analysis Approach”. In: IADIS International Conference
Information Systems 2011, March, 11-13, Avila, Spain.

BARBOSA, F. S. "Comparing Three Aspect Mining Techniques." 2008. Doctoral
Symposium in Informatics Engineering (DSIE'08). Portugal.

BLOOMBERG, J.; SCHMELZER, R. 2006. “Service Orient or Be Doomed!: How
Service Orientation Will Change Your Business”. Hoboken, NJ: John Wiley & Sons.

BOSE, R. J. C.; VAN DER AALST, W. M. 2009. “Abstractions in process mining: A
taxonomy of patterns”. In Business Process Management (pp. 159-175). Springer Berlin
Heidelberg.

BUIJS, J. C. A. M.; VAN DONGEN, B. F.; VAN DER AALST, W. M. P. 2013.
“Mining Configurable Process Models from Collections of Event Logs”. BPM (Business
Process Management) 11th Conference, China.

CAMPOS J. P.; BRAGA J. L.; RESENDE A. M. P.; SILVA C. H. O. 2010.
”Identification of aspect candidates by inspecting use cases descriptions”. SIGSOFT
(Special Interest Group on Software Engineering), vol 35, pp 1-9.

CAPPELLI, C.; LEITE, J.; BATISTA, T.; SILVA, L. 2009. “An Aspect-Oriented
Approach to Business Process Modeling.”. EA-AOSD (15th Early Aspects Workshop -
8th International Conference on Aspect-Oriented Software Development), USA.

CAPPELLI, C.; SANTORO, F. M.; LEITE, J. C. S. P.; MEDEIROS, A. L.; BATISTA,
T.; ROMEIRO, C. S. C. 2010. “Reflections on the modularity of business process
models. The case for introducing the aspect-oriented paradigm”. BPM Journal Vol. 16.

CASACHI, R. A.; CAMOLESI, A. R. 2012. "Uso de Programação Orientada a
Aspecto no Desenvolvimento de Aplicações que utilizam conceitos de Tecnologia
Adaptativa". Adaptive Technology Workshop.

CHARFI, A.; MEZINI, M. 2004. “Aspect-oriented web service composition with
AO4BPEL”. In Web Services (pp. 168-182). Springer Berlin Heidelberg.

74

CHARFI A.; MÜLLER H.; MEZINI M. 2010. “Aspect-Oriented Business Process
Modeling with AO4BPMN”. In T. K. et al., editor, Modelling Foundations and
Applications, volume 6138 of LNCS, pages 48-61. Springer.

COLLELL, D. C. 2012. “Aspect-oriented modeling of business processes”. Master's
thesis, der Technischen Universitat Darmstadt, Darmstadt.

DAVENPORT, T. 1994. “Reengenharia de processos”. Rio de Janeiro: Campus, p.6-8.

DUMAS, M.; LA ROSA, M.; MENDLING, J.; REIJERS, H. A. 2013. “Fundamentals
of Business Process Management”. Springer.

FINLAYSON, M. A. 2014. “Java Libraries for Accessing the Princeton Wordnet:
Comparison and Evaluation.” Proceedings of the 7th Global Wordnet Conference.
Tartu, Estonia.

GARCIA, R. 2010. "O que é Programação Orientada a Aspectos?". Java Framework
Portal. Available at <http://www.javaframework.org/portal/2010/04/14/o-que-
programao-orientada-a-aspectos>. Accessed in May, 2014.

GÜNTHER, W. C.; ROZINAT, A. 2012. “Disco: Discover Your Processes”. BPM
(Demos), v. 940, p. 40-44.

GÜNTHER, W. C.; VERBEEK E. 2014. "OpenXES - Developer Guide 2.0". Available
at: http://www.xes-standard.org/openxes/developerguide. Accessed on February, 2015.

GÜNTHER, W. C.; VAN DER AALST, W. M. 2007. “Fuzzy mining–adaptive process
simplification based on multi-perspective metrics”. In Business Process
Management (pp. 328-343). Springer Berlin Heidelberg.

JALALI, A. 2014. "Assessing aspect oriented approaches in business process
management." Perspectives in Business Informatics Research. Springer International
Publishing, p231-245. (a)

JALALI, A. 2014. "Aspect Mining in Business Process Management." Perspectives in
Business Informatics Research. Springer International Publishing, p246-260. (b)

JOSUTTIS, N. 2007. “SOA in practice: The Art of Distributed System Design”. Beijing;
Cambridge. O’Reilly, 324p.

KICZALES, G.; HUGUNIN, J.; HILSDALE, E.; KERSTEN, M.; PALM, J.; LOPES,
C.; GRISWOLD, B.; ISBERG, W. 2003. "Aspect Oriented Programming". Final
Technical Report from Air Force Research Laboratory from Palo Alto Research Center.
Rome, New York. July.

KICZALES, G.; LAMPING, J.; MENDHEKAR, A.; MAEDA, C.; LOPES C.;
LOINGTIER J.; IRWIN, J. 1997. “Aspect-Oriented Programming”. European
Conference on Object-Oriented Programming (ECOOP), Finland. Springer-Verlag
LNCS 1241. June.

75

MENDLING, J.; REIJERS, H. A.; RECKER, J. 2010. “Activity labeling in process
modeling: Empirical insights and recommendations.” Information Systems, v. 35, n. 4,
p. 467-482.

OLIVEIRA, S. B. 2006. “Gestão pro Processos: fundamentos, técnicas e modelos de
implementação”. Rio de Janeiro: Qualitymark. page 291-305.

OMG. 2011. “Business Process Modeling Notation Specification”. January.

OSTROFF, F. 1999. “The Horizontal Organization: what the organization of the future
actually looks like and how it delivers value to customers”. Page 257. USA: Oxford
University Press.

PAHLSSON, N. 2012. "Aspect-Oriented Programming - An Introduction to Aspect-
Oriented Programming and AspectJ". Department of Technology from University of
Kalmar. Topic Report for Software Engineering. Novembro.

RAGO, A.; ABAIT E.; MARCOS C.; DIAZ-PACE A. 2009. “Early Aspect
Identification From Use Cases Using Nlp And Wsd Techniques”. 15th Workshop on
Early aspects from International Conference on Aspect-Oriented Software
Development.

RECKER, J. 2012. “Scientific research in information systems: a beginner's guide”.
Springer Science & Business Media.

REICHERT, M.; HALLERBACH, A.; BAUER, T. 2015. “Lifecycle management of
business process variants”. In: Handbook on Business Process Management 1. Springer
Berlin Heidelberg, p. 251-278.

RICHETTI, P. H. P.; BAIÃO F. A.; SANTORO F. M. 2014. "Declarative Process
Mining: Reducing Discovered Models Complexity by Pre-Processing Event Logs."
Business Process Management. Springer International Publishing, p400-407.

ROZINAT, A.; DE MEDEIROS, A. K. A.; GÜNTHER, C. W.; WEIJTERS, A. J. M.
M.; VAN DER AALST, W. M. 2008. “The need for a process mining evaluation
framework in research and practice”. In Business Process Management Workshops (pp.
84-89). Springer Berlin Heidelberg. January.

RUBIN, V.; LOMAZOVA, I.; VAN DER AALST, W. M. P. 2014. “Agile development
with software process mining”. In: Proceedings of the 2014 International Conference on
Software and System Process. ACM, 2014. p. 70-74.

SAMPAIO A.; CHITCHYAN R.; RASHID A.; RAYSON P. 2005. “EA-Miner: a tool
for automating aspect-oriented requirements identification”. 20th IEEE/ACM
International Conference on Automated software engineering.

SANTOS, F. J. N.; LEITE, J. C. S. P.; CAPPELLI, C.; BATISTA, T. V.; SANTORO,
F. M. 2011. "Using goals to identify aspects in business process models." Proceedings
of the 2011 international workshop on Early aspects. ACM.

SHARP, A.; MCDERMOTT, P. 2001. “Workflow Modeling: Tools for Process
Improvement and Application Development”. Artech House - ISBN 1-58053-021-4

76

SIGNAVIO. 2014. "BPM Academic Initiative". Available at <
http://www.signavio.com/bpm-academic-initiative/>. Accessed in December, 2014.

SILVA, L.F. 2006. “An aspect-oriented strategy for requirements modeling”, PhD
thesis, Computer Science Department, PUC-Rio, Rio de Janeiro, March.

SOARES, A. H. V.; ROCHA, A. DE R.; ALVES, F. L.; ALVES, J. C. 2012.
"Programação Orientada a aspectos - uma visão geral". Department of Computer
Science of the Federal University of Lavras.

SOUZA A.; CAPPELLI C.; SANTORO F.; AZEVEDO L. G.; LEITE J. C. S. DO P.
2011. ”Service Identification in Aspect-Oriented Business Process Models”. SOSE
(Service Oriented System Engineering) 6th International Symposium.

TAVARES F.; MARINHO L. 2014. “AO-BPM 2.0: Modelagem de Processos
Orientada a Aspectos”. Final graduation work. Available at:
http://bsi.uniriotec.br/tcc/publicacoes.html.

TOUTANOVA K; KLEIN D; MANNING C; SINGER Y. 2003. “Feature-Rich Part-of-
Speech Tagging with a Cyclic Dependency Network.” In Proceedings of HLT-NAACL
2003, pp. 252-259.

VALLE, R.; OLIVEIRA, S. B. 2012. “Análise e Modelagem de Processos de Negócio.
Foco na Notação BPMN”. São Paulo: Atlas, 2012.

VAN DER AALST, W. M. P. 2013. “Process cubes: Slicing, dicing, rolling up and
drilling down event data for process mining”. In Asia Pacific Business Process
Management (pp. 1-22). Springer International Publishing.

VAN DER AALST, W. M. P.; WEIJTERS A. J. M. M. 2004. “Process mining: a
research agenda”. Journal Computers in Industry – Special Issue: Process/Workflow
mining Vol. 53 Issue 3, pp. 231 – 244. Elsevier Science Publishers B. V. Amsterdam.
Abril.

VAN DER AALST, W.M.P.; ADRIANSYAH, A.; ALVES DE MEDEIROS, A.K.;
ARCIERI, F.; BAIER, T.; BLICKLE, T.; BOSE, J.C.; BRAND, P.C.W. VAN DEN,
BRANDTJEN, R.; BUIJS, J.C.A.M.; BURATTIN, A.; CARMONA, J.;
CASTELLANOS, M.; CLAES, J.; COOK, J.; COSTANTINI, N.; CURBERA, F.;
DAMIANI, E.; LEONI, M. DE; DELIAS, P.; DONGEN, B.F. VAN; DUMAS, M.;
DUSTDAR, S.; FAHLAND, D.; FERREIRA, D.R.; GAALOUL, W.; GEFFEN, F.
VAN; GOEL, S.; GUNTHER, C.W.; GUZZO, A.; HARMON, P.; HOFSTEDE,
A.H.M. TER; HOOGLAND, J.; INGVALDSEN, J.E.; KATO, K.; KUHN, R.;
KUMAR, A.; LA ROSA, M.; MAGGI, F.M.; MALERBA, D.; MANS, R.S.;
MANUEL, A.; MCCREESH, M.; MELLO, P.; MENDLING, J.; MONTALI, M.;
MOTAHARI NEZHAD, H.; MUEHLEN, M. ZUR; MUNOZ-GAMA, J.; PONTIERI,
L.; RIBEIRO, J.T.S.; ROZINAT, A.; SEGUEL PERÉZ, H.; SEGUEL PÉREZ, R.E.;
SEPÚLVEDA, M.; SINUR, J.; SOFFER, P.; SONG, M.S.; SPERDUTI, A.; STILO, G.;
STOEL, C.; SWENSON, K.; TALAMO, M.; TAN, W.; TURNER, C.; VANTHIENEN,
J.; VARVARESSOS, G.; VERBEEK, H.M.W.; VERDONK, M.C.; VIGO, R.; WANG,
J.; WEBER, B.; WEIDLICH, M.; WEIJTERS, A.J.M.M.; WEN, L.; WESTERGAARD,
M.; WYNN, M.T. 2011. “Process mining manifesto”. In F. Daniel, K. Barkaoui & S.

77

Dustdar (Eds.), Business Process Management Workshops (BPM 2011 International
Workshops, Clermont-Ferrand, France, August 29, 2011, Revised Selected Papers, Part
I), (Lecture Notes in Business Information Processing, 99, pp. 169-194). Berlin:
Springer.

VAN DONGEN, B. F.; DE MEDEIROS, A. K. A.; VERBEEK, H. M. W.; WEIJTERS,
A. J. M. M.; VAN DER AALST, W. M. 2005. “The ProM framework: A new era in
process mining tool support”. In Applications and Theory of Petri Nets 2005 (pp. 444-
454). Springer Berlin Heidelberg.

VERBEEK, H.M.W. 2010. ”ProM 6 Getting Started”. ProM documentation. Available
at < http://www.promtools.org/prom6/downloads/prom-6.0-getting-started.pdf >.
September.

WANG, J.; ZHU, J.; LIANG, H.; XU, K. 2005. “Aspect-Oriented Business Process
Modeling”. Research Report, IBM – China.

WESKE, M. 2012. “Business process management: concepts, languages,
architectures.” Springer Science & Business Media.

WfMC. 1999. “Workflow management coalition terminolog and glossary”. Technical
Report WfMC-TC-1011, Workflow Management Coalition, Brussels. Februrary,1999.

78

Appendix I. Real Life Events Processes

This section presents the process models for services components “WBS000091” (Figure 21), “WBS000263” (Figure 22) and

“WBS000073” (Figure 23).

Figure 21 – Process model of Service Component “WBS000091”.

79

Figure 22 – Process model for Service Component “WBS000263”.

80

Figure 23 – Process model for Service Component “WBS000073”

81

Appendix II. Results Comparison

This section presents the table comparing the results between the method and the interviewees’ identification.

Table 2 - Aspect results comparison.

Start

End
Open Closed

Caused

By CI

Status

Change
Assignment Reassignment Update

Operator

Update

Description

Update
Resolved

Mail to

Customer

Communication

with

Customer

Gateway

before

Mail to

Customer

Gateway

after

closed

Method X X X X

Interviewee

#1
X X X X X

Interviewee

#2
X X X X X X X X X X

Interviewee

#3
X X X

82

Appendix III. Log Files

Beginning of the synthetic log file of “Require Discipline Program Process” with

only one trace.

<?xml version="1.0" encoding="UTF-8" ?>

<!-- XES version 1.0 -->

<!-- Created by Fluxicon Disco (http://fluxicon.com/disco/ -->

<!-- (c) 2012 Fluxicon Process Laboratories - http://fluxicon.com/ -->

<log xes.version="1.0" xmlns="http://www.xes-standard.org" xes.creator="Fluxicon Disco">

 <extension name="Concept" prefix="concept" uri="http://www.xes-

standard.org/concept.xesext"/>

 <extension name="Lifecycle" prefix="lifecycle" uri="http://www.xes-

standard.org/lifecycle.xesext"/>

 <extension name="Time" prefix="time" uri="http://www.xes-standard.org/time.xesext"/>

 <extension name="Organizational" prefix="org" uri="http://www.xes-

standard.org/org.xesext"/>

 <global scope="trace">

 <string key="concept:name" value="name"/>

 </global>

 <global scope="event">

 <string key="concept:name" value="name"/>

 <string key="lifecycle:transition" value="transition"/>

 <string key="org:resource" value="resource"/>

 <date key="time:timestamp" value="2015-03-21T18:12:53.266-03:00"/>

 <string key="Activity" value="string"/>

 <string key="Resource" value="string"/>

 </global>

 <classifier name="Activity" keys="Activity"/>

 <classifier name="Resource" keys="Resource"/>

 <string key="lifecycle:model" value="standard"/>

83

 <string key="creator" value="Fluxicon Disco"/>

 <string key="library" value="Fluxicon Octane"/>

 <trace>

 <string key="concept:name" value="61"/>

 <string key="creator" value="Fluxicon Disco"/>

 <event>

 <string key="concept:name" value="Discipline program required"/>

 <string key="lifecycle:transition" value="complete"/>

 <string key="org:resource" value="NOT_SET"/>

 <date key="time:timestamp" value="2015-03-10T12:17:12.654-03:00"/>

 <string key="Activity" value="Discipline program required"/>

 </event>

 <event>

 <string key="concept:name" value="Fill form"/>

 <string key="lifecycle:transition" value="complete"/>

 <string key="org:resource" value="NOT_SET"/>

 <date key="time:timestamp" value="2015-03-10T12:26:32.478-03:00"/>

 <string key="Activity" value="Fill form"/>

 </event>

 <event>

 <string key="concept:name" value="Print discipline program"/>

 <string key="lifecycle:transition" value="complete"/>

 <string key="org:resource" value="NOT_SET"/>

 <date key="time:timestamp" value="2015-03-10T14:33:09.510-03:00"/>

 <string key="Activity" value="Print discipline program"/>

 </event>

 <event>

 <string key="concept:name" value="Stamp all files"/>

 <string key="lifecycle:transition" value="complete"/>

 <string key="org:resource" value="NOT_SET"/>

 <date key="time:timestamp" value="2015-03-11T11:09:38.013-03:00"/>

 <string key="Activity" value="Stamp all files"/>

 </event>

 <event>

 <string key="concept:name" value="Sign all files"/>

 <string key="lifecycle:transition" value="complete"/>

 <string key="org:resource" value="NOT_SET"/>

84

 <date key="time:timestamp" value="2015-03-11T14:56:58.907-03:00"/>

 <string key="Activity" value="Sign all files"/>

 </event>

 <event>

 <string key="concept:name" value="File form"/>

 <string key="lifecycle:transition" value="complete"/>

 <string key="org:resource" value="NOT_SET"/>

 <date key="time:timestamp" value="2015-03-12T12:45:38.231-03:00"/>

 <string key="Activity" value="File form"/>

 </event>

 <event>

 <string key="concept:name" value="Discipline program obtained"/>

 <string key="lifecycle:transition" value="complete"/>

 <string key="org:resource" value="NOT_SET"/>

 <date key="time:timestamp" value="2015-03-12T12:45:38.231-03:00"/>

 <string key="Activity" value="Discipline program obtained"/>

 </event>

 </trace>

85

Beginning of the real life events log file of Service 091 with only one trace.

<?xml version="1.0" encoding="UTF-8" ?>

<!-- XES version 1.0 -->

<!-- Created by Fluxicon Disco (http://fluxicon.com/disco/ -->

<!-- (c) 2012 Fluxicon Process Laboratories - http://fluxicon.com/ -->

<log xes.version="1.0" xmlns="http://www.xes-standard.org" xes.creator="Fluxicon Disco">

 <extension name="Concept" prefix="concept" uri="http://www.xes-

standard.org/concept.xesext"/>

 <extension name="Lifecycle" prefix="lifecycle" uri="http://www.xes-

standard.org/lifecycle.xesext"/>

 <extension name="Time" prefix="time" uri="http://www.xes-standard.org/time.xesext"/>

 <extension name="Organizational" prefix="org" uri="http://www.xes-

standard.org/org.xesext"/>

 <global scope="trace">

 <string key="concept:name" value="name"/>

 </global>

 <global scope="event">

 <string key="concept:name" value="name"/>

 <string key="lifecycle:transition" value="transition"/>

 <string key="org:resource" value="resource"/>

 <date key="time:timestamp" value="2015-03-16T01:10:51.823-03:00"/>

 <string key="INCIDENTACTIVITY_TYPE" value="string"/>

 <string key="ASSIGNMENT_GROUP" value="string"/>

 </global>

 <classifier name="Activity" keys="INCIDENTACTIVITY_TYPE"/>

 <classifier name="Resource" keys="ASSIGNMENT_GROUP"/>

 <string key="lifecycle:model" value="standard"/>

 <string key="creator" value="Fluxicon Disco"/>

 <string key="library" value="Fluxicon Octane"/>

 <trace>

 <string key="concept:name" value="IM0001274"/>

 <string key="creator" value="Fluxicon Disco"/>

 <event>

 <string key="concept:name" value="Start"/>

 <string key="lifecycle:transition" value="complete"/>

 <string key="org:resource" value="Start"/>

 <date key="time:timestamp" value="2013-01-10T08:48:00.000-02:00"/>

86

 <string key="INCIDENTACTIVITY_TYPE" value="Start"/>

 <string key="ASSIGNMENT_GROUP" value="Start"/>

 </event>

 <event>

 <string key="concept:name" value="Open"/>

 <string key="lifecycle:transition" value="complete"/>

 <string key="org:resource" value="TEAM0008"/>

 <date key="time:timestamp" value="2013-01-10T08:48:00.000-02:00"/>

 <string key="INCIDENTACTIVITY_TYPE" value="Open"/>

 <string key="ASSIGNMENT_GROUP" value="TEAM0008"/>

 </event>

 <event>

 <string key="concept:name" value="Closed"/>

 <string key="lifecycle:transition" value="complete"/>

 <string key="org:resource" value="TEAM0075"/>

 <date key="time:timestamp" value="2013-01-10T09:14:00.000-02:00"/>

 <string key="INCIDENTACTIVITY_TYPE" value="Closed"/>

 <string key="ASSIGNMENT_GROUP" value="TEAM0075"/>

 </event>

 <event>

 <string key="concept:name" value="Caused By CI"/>

 <string key="lifecycle:transition" value="complete"/>

 <string key="org:resource" value="TEAM0075"/>

 <date key="time:timestamp" value="2013-01-10T09:14:00.000-02:00"/>

 <string key="INCIDENTACTIVITY_TYPE" value="Caused By CI"/>

 <string key="ASSIGNMENT_GROUP" value="TEAM0075"/>

 </event>

 <event>

 <string key="concept:name" value="End"/>

 <string key="lifecycle:transition" value="complete"/>

 <string key="org:resource" value="End"/>

 <date key="time:timestamp" value="2013-01-10T09:14:00.000-02:00"/>

 <string key="INCIDENTACTIVITY_TYPE" value="End"/>

 <string key="ASSIGNMENT_GROUP" value="End"/>

 </event>

 </trace>

87

Appendix IV. Original Log

This section presents a snapshot of the original log files. Table 3 is the snapshot from the interaction dataset. Table 4 is from the incident

dataset and Table 5 is from the incident activity dataset.

Table 3 - Interaction dataset.

CI
Name
(aff)

CI
Type
(aff)

CI Subtype
(aff)

Service Comp
WBS (aff)

Interact
ion ID

Stat
us

Im
pac
t

Urg
ency

Prio
rity

Category KM
numbe
r

Open Time
(First Touch)

Close
Time

Closure
Code

First Call
Resolution

Handl
e Time
(secs)

Related
Incident

SBA000
243

applicat
ion

Server Based
Application

WBS000125 SD0000
001

Clos
ed

5 4 4 incident KM00
00987

09/09/2011
09:23

14/02/201
4 09:05

Other N 239 IM00000
01

SUB000
443

subappli
cation

Web Based
Application

WBS000125 SD0000
002

Clos
ed

4 4 4 request for
information

KM00
00989

29/09/2011
14:59

13/12/201
3 16:27

Software N 406 IM00000
01

LAP000
110

comput
er

Laptop WBS000187 SD0000
003

Clos
ed

4 4 4 incident KM00
00317

13/10/2011
15:47

21/10/201
3 05:01

Software N 738

DTA00
0110

applicat
ion

Desktop
Application

WBS000256 SD0000
004

Clos
ed

4 4 4 incident KM00
00057

01/12/2011
15:39

21/10/201
3 05:02

Unknown N 787

SBA000
855

applicat
ion

Server Based
Application

WBS000054 SD0000
005

Clos
ed

4 4 4 incident KM00
00652

23/12/2011
16:23

21/10/201
3 05:02

Software N 459 IM00000
03

SUB000
424

subappli
cation

Web Based
Application

WBS000073 SD0000
006

Clos
ed

4 4 4 incident KM00
00702

16/01/2012
14:09

21/10/201
3 05:03

Other N 412

SUB000
508

subappli
cation

Web Based
Application

WBS000162 SD0000
007

Clos
ed

4 4 4 incident KM00
00553

05/02/2012
13:26

04/11/201
3 13:51

Other N 363 IM00000
04

DTA00
0616

applicat
ion

Desktop
Application

WBS000092 SD0000
008

Clos
ed

3 3 3 incident KM00
00988

09/02/2012
12:38

21/10/201
3 05:03

Software N 374

CBD00
0079

comput
er

Banking
Device

WBS000147 SD0000
009

Clos
ed

2 2 2 incident KM00
00132

15/02/2012
15:46

21/10/201
3 05:04

Hardware N 272

SBA000
207

applicat
ion

Server Based
Application

WBS000123 SD0000
010

Clos
ed

3 3 3 incident KM00
00488

27/02/2012
07:52

17/01/201
4 10:41

Other N 295

88

Table 4 - Incident dataset.

CI
Na
me
(aff
)

CI
Ty
pe
(af
f)

CI
Subt
ype
(aff)

Service
Compo
nent
WBS
(aff)

In
ci
de
nt
ID

S
t
a
t
u
s

I
m
p
a
c
t

U
r
g
e
n
c
y

P
ri
o
ri
ty

Cate
gory

K
M
nu
m
be
r

Al
ert
St
at
us

Rea
ssig
nm
ents

Ope
n
Tim
e

Reo
pen
Tim
e

Res
olve
d
Tim
e

Clo
se
Tim
e

Han
dle
Time
(Hou
rs)

Closur
e Code

Relat
ed
Inter
actio
ns

Rela
ted
Inte
racti
on

Rela
ted
Inci
dent
s

Rela
ted
Cha
nges

Rel
ate
d
Ch
ang
e

CI
Na
me
(C
By)

CI
Ty
pe
(C
By)

CI
Subt
ype
(CBy
)

Servic
eCom
p
WBS
(CBy)

SU
B0
005
08

sub
app
lica
tio
n

Web
Base
d
Appli
catio
n

WBS00
0162

IM
00
00
00
4

C
l
o
s
e
d

4 4 4 incid
ent

K
M
00
00
55
3

clo
se
d

26 05/0
2/20

12
13:3

2

 04/1
1/20

13
13:5

0

04/1
1/20

13
13:5

1

3871,
691

Other 1 SD0
0000
07

2 SU
B00
050
8

sub
app
lica
tion

Web
Base
d
Appli
catio
n

WBS0
00162

W
BA
000
124

app
lica
tio
n

Web
Base
d
Appli
catio
n

WBS00
0088

IM
00
00
00
5

C
l
o
s
e
d

3 3 3 incid
ent

K
M
00
00
61
1

clo
se
d

33 12/0
3/20

12
15:4

4

02/1
2/20

13
12:3

1

02/1
2/20

13
12:3

6

02/1
2/20

13
12:3

6

4354,
786

Softwa
re

1 SD0
0000
11

1 WB
A0
001
24

app
lica
tion

Web
Base
d
Appli
catio
n

WBS0
00088

DT
A0
000
24

app
lica
tio
n

Deskt
op
Appli
catio
n

WBS00
0092

IM
00
00
00
6

C
l
o
s
e
d

3 3 3 reque
st for
infor
matio
n

K
M
00
00
33
9

clo
se
d

3 29/0
3/20

12
12:3

6

 13/0
1/20

14
15:1

2

13/0
1/20

14
15:1

3

4843,
119

No
error -
works
as
design
ed

1 SD0000017 DT
A0
000
24

app
lica
tion

Deskt
op
Appli
catio
n

WBS0
00092

W
BA
000
124

app
lica
tio
n

Web
Base
d
Appli
catio
n

WBS00
0088

IM
00
00
01
1

C
l
o
s
e
d

4 4 4 incid
ent

K
M
00
00
61
1

clo
se
d

13 17/0
7/20

12
11:4

9

 14/1
1/20

13
09:3

1

14/1
1/20

13
09:3

1

43,21
833

Operat
or
error

1 SD0000025 WB
A0
001
24

app
lica
tion

Web
Base
d
Appli
catio
n

WBS0
00088

W
BA
000
124

app
lica
tio
n

Web
Base
d
Appli
catio
n

WBS00
0088

IM
00
00
01
2

C
l
o
s
e
d

4 4 4 incid
ent

K
M
00
00
61
1

clo
se
d

2 10/0
8/20

12
11:0

1

 08/1
1/20

13
13:5

5

08/1
1/20

13
13:5

5

3383,
903

Other 1 SD0000029 SU
B00
050
8

sub
app
lica
tion

Web
Base
d
Appli
catio
n

WBS0
00162

W
BA
000
124

app
lica
tio
n

Web
Base
d
Appli
catio
n

WBS00
0088

IM
00
00
01
3

C
l
o
s
e
d

4 4 4 incid
ent

K
M
00
00
61
1

clo
se
d

4 10/0
8/20

12
11:2

7

 08/1
1/20

13
13:5

4

08/1
1/20

13
13:5

4

3383,
437

Other 1 SD0000031 SU
B00
050
8

sub
app
lica
tion

Web
Base
d
Appli
catio
n

WBS0
00162

89

W
BA
000
082

app
lica
tio
n

Web
Base
d
Appli
catio
n

WBS00
0055

IM
00
00
01
4

C
l
o
s
e
d

4 4 4 incid
ent

K
M
00
00
40
1

clo
se
d

2 15/0
8/20

12
14:1

7

 27/1
2/20

13
10:5

9

27/1
2/20

13
10:5

9

3703,
191

Unkno
wn

1 SD0000033 WB
A0
000
82

app
lica
tion

Web
Base
d
Appli
catio
n

WBS0
00055

W
BA
000
124

app
lica
tio
n

Web
Base
d
Appli
catio
n

WBS00
0088

IM
00
00
01
5

C
l
o
s
e
d

4 4 4 incid
ent

K
M
00
00
61
1

clo
se
d

5 22/0
8/20

12
16:3

1

 08/1
1/20

13
14:0

9

08/1
1/20

13
14:0

9

3294,
624

Other 1 SD0000034 WB
A0
001
24

app
lica
tion

Web
Base
d
Appli
catio
n

WBS0
00088

W
BA
000
124

app
lica
tio
n

Web
Base
d
Appli
catio
n

WBS00
0088

IM
00
00
01
7

C
l
o
s
e
d

3 3 3 incid
ent

K
M
00
00
61
1

clo
se
d

2 29/0
8/20

12
15:5

9

 08/1
1/20

13
14:0

2

08/1
1/20

13
14:0

2

0,862
778

Other 1 SD0000036 #N/
B

#N/
B

#N/B #N/B

W
BA
000
082

app
lica
tio
n

Web
Base
d
Appli
catio
n

WBS00
0055

IM
00
00
01
8

C
l
o
s
e
d

4 4 4 incid
ent

K
M
00
00
40
1

clo
se
d

2 03/0
9/20

12
16:0

4

 08/1
1/20

13
14:3

3

08/1
1/20

13
14:3

5

3211,
527

No
error -
works
as
design
ed

1 SD0000037 #N/
B

#N/
B

#N/B #N/B

W
BA
000
124

app
lica
tio
n

Web
Base
d
Appli
catio
n

WBS00
0088

IM
00
00
01
9

C
l
o
s
e
d

4 4 4 incid
ent

K
M
00
00
61
1

clo
se
d

6 21/0
9/20

12
12:5

6

 08/1
1/20

13
14:2

3

08/1
1/20

13
14:2

3

3067,
449

Softwa
re

1 SD0000040 1 C00
000
056

#N/
B

#N/
B

#N/B #N/B

W
BA
000
124

app
lica
tio
n

Web
Base
d
Appli
catio
n

WBS00
0088

IM
00
00
02
0

C
l
o
s
e
d

4 4 4 incid
ent

K
M
00
00
61
1

clo
se
d

8 01/1
0/20

12
10:4

9

 08/1
1/20

13
14:1

8

08/1
1/20

13
14:2

2

1322,
619

Softwa
re

1 SD0000042 #N/
B

#N/
B

#N/B #N/B

W
BA
000
082

app
lica
tio
n

Web
Base
d
Appli
catio
n

WBS00
0055

IM
00
00
02
1

C
l
o
s
e
d

4 4 4 incid
ent

K
M
00
00
40
1

clo
se
d

5 02/1
0/20

12
12:1

2

28/0
1/20

14
14:0

7

04/0
2/20

14
09:3

8

04/0
2/20

14
09:3

8

1132,
428

Softwa
re

2 #MULTIVA
LUE

 WB
A0
000
82

app
lica
tion

Web
Base
d
Appli
catio
n

WBS0
00055

90

Table 5 - Incident activity dataset.

Incident ID DateStamp IncidentActivity_Number IncidentActivity_Name Assignment Group KM number Interaction ID

IM0000004 07/01/2013 08:17 001A3689763 Reassignment TEAM0001 KM0000553 SD0000007

IM0000004 04/11/2013 13:41 001A5852941 Reassignment TEAM0002 KM0000553 SD0000007

IM0000004 04/11/2013 13:41 001A5852943 Update from customer TEAM0002 KM0000553 SD0000007

IM0000004 04/11/2013 12:09 001A5849980 Operator Update TEAM0003 KM0000553 SD0000007

IM0000004 04/11/2013 12:09 001A5849979 Assignment TEAM0003 KM0000553 SD0000007

IM0000004 04/11/2013 13:41 001A5852942 Assignment TEAM0002 KM0000553 SD0000007

IM0000004 04/11/2013 13:51 001A5852172 Closed TEAM0003 KM0000553 SD0000007

IM0000004 04/11/2013 13:51 001A5852173 Caused By CI TEAM0003 KM0000553 SD0000007

IM0000004 04/11/2013 12:09 001A5849978 Reassignment TEAM0003 KM0000553 SD0000007

IM0000004 25/09/2013 08:27 001A5544096 Operator Update TEAM0003 KM0000553 SD0000007

IM0000005 03/06/2013 11:15 001A4725475 Update TEAM9999 KM0000611 SD0000011

IM0000005 03/04/2013 11:29 001A4327777 Operator Update TEAM0003 KM0000611 SD0000011

IM0000005 07/01/2013 08:17 001A3689771 Reassignment TEAM0001 KM0000611 SD0000011

IM0000005 05/09/2013 08:58 001A5377163 Operator Update TEAM0003 KM0000611 SD0000011

IM0000005 12/04/2013 11:03 001A4396943 Operator Update TEAM0003 KM0000611 SD0000011

IM0000005 23/04/2013 08:22 001A4466088 Status Change TEAM0003 KM0000611 SD0000011

IM0000005 02/12/2013 12:00 001A6068111 Update from customer TEAM0002 KM0000611 SD0000011

IM0000005 02/12/2013 12:32 001A6068174 Reassignment TEAM0002 KM0000611 SD0000011

IM0000005 02/12/2013 12:32 001A6068175 Assignment TEAM0002 KM0000611 SD0000011

IM0000005 02/12/2013 12:36 001A6068564 Caused By CI TEAM0003 KM0000611 SD0000011

IM0000005 02/12/2013 12:36 001A6068563 Closed TEAM0003 KM0000611 SD0000011

IM0000005 02/12/2013 12:32 001A6068177 Update from customer TEAM0002 KM0000611 SD0000011

IM0000005 02/12/2013 12:32 001A6068176 Status Change TEAM0002 KM0000611 SD0000011

IM0000005 27/03/2013 08:57 001A4287716 Operator Update TEAM0003 KM0000611 SD0000011

IM0000005 16/04/2013 14:19 001A4419476 Status Change TEAM9999 KM0000611 SD0000011

91

IM0000005 12/04/2013 11:03 001A4396942 Status Change TEAM0003 KM0000611 SD0000011

IM0000005 24/05/2013 08:42 001A4664412 Reassignment TEAM9999 KM0000611 SD0000011

IM0000005 02/12/2013 11:48 001A6065225 Reassignment TEAM0003 KM0000611 SD0000011

IM0000005 02/12/2013 11:48 001A6065226 Assignment TEAM0003 KM0000611 SD0000011

IM0000005 02/12/2013 11:48 001A6065227 Operator Update TEAM0003 KM0000611 SD0000011

IM0000005 27/03/2013 08:57 001A4287717 Description Update TEAM0003 KM0000611 SD0000011

IM0000005 03/04/2013 11:29 001A4327776 Assignment TEAM0003 KM0000611 SD0000011

IM0000005 03/06/2013 11:14 001A4725473 Assignment TEAM9999 KM0000611 SD0000011

IM0000005 03/04/2013 11:29 001A4327775 Reassignment TEAM0003 KM0000611 SD0000011

IM0000005 16/04/2013 14:19 001A4419475 Assignment TEAM9999 KM0000611 SD0000011

IM0000005 24/05/2013 08:42 001A4664414 Analysis/Research TEAM9999 KM0000611 SD0000011

IM0000005 24/05/2013 08:42 001A4664413 Assignment TEAM9999 KM0000611 SD0000011

IM0000005 03/06/2013 11:15 001A4725474 Assignment TEAM9999 KM0000611 SD0000011

IM0000011 14/11/2013 09:31 001A5926549 Closed TEAM0004 KM0000611 SD0000025

