
Universidade Federal do Estado do Rio de Janeiro

Centro de Ci

ˆ

encias Exatas e Tecnologia

Programa de P

´

os-Graduaç

˜

ao em Inform

´

atica

ON THE LEARNING OF MULTIPLE CONCEPTS IN
DESCRIPTION LOGIC

Raphael Melo Thiago

Orientadoras
Kate Cerqueira Revoredo

Aline Marins Paes Carvalho

Rio de Janeiro, RJ - Brasil

Maio de 2014

�������������7KLDJR��5DSKDHO�0HOR�
7�������������2Q�WKH�OHDUQLQJ�RI�PXOWLSOH�FRQFHSWV�LQ�GHVFULSWLRQ�ORJLF���5DSKDHO�
���������������0HOR�7KLDJR�������
���������������������I�������FP
�������������������
������������������2ULHQWDGRUD��.DWH�&HUTXHLUD�5HYRUHGR�
������������������&RRULHQWDGRUD��$OLQH�0DULQV�3DHV�&DUYDOKR�
������������������'LVVHUWDomR��0HVWUDGR�HP�,QIRUPiWLFD����8QLYHUVLGDGH�)HGHUDO�GR�
��������������(VWDGR�GR�5LR�GH�-DQHLUR��5LR�GH�-DQHLUR�������

��������/yJLFD�����2QWRORJLD�����$SUHQGL]DJHP���7HUPLQRORJLD�����/yJLFDV�
GH�GHVFULomR���$SUHQGL]DGR�GH�P~OWLSORV�FRQFHLWRV��,��5HYRUHGR��.DWH�
&HUTXHLUD��,,��&DUYDOKR��$OLQH�0DULQV�3DHV��,,,��8QLYHUVLGDGH�)HGHUDO�
GR�(VWDGR�GR�5LR�GH�-DQHLUR��&HQWUR�GH�&LrQFLDV�([DWDV�H�7HFQROyJLFDV��
&XUVR�GH�0HVWUDGR�HP�,QIRUPiWLFD��,9��7tWXOR��������������
��������������������

��&''������

iii

Alea jacta est

Júlio César

iv

Agradecimentos
Agradeço aos meus familares: meu pai, Alonso, minha vó, Célia, minha mãe,

Maria Regina, meu irmão, Roberto, por todo o suporte, apoio, compreensão e sa-

crif́ıcios diários por todos esses anos. Sem o apoio e os ensinamentos de vocês eu

nunca teria chegado até aqui.

Às minhas orientadoras, Kate Revoredo e Aline Paes, cuja capacidade e dedicação

me serviu de constantes inspiração durante essa jornada.

À todos que em algum momento afetaram positiva ou negativamente a minha

vida, sem essas experiências eu não seria a pessoa que sou hoje.

E por último, gostaria de agrecer à CAPES pelo apoio financeiro que me permitiu

ter a didicação completa durante a duração do mestrado, sem isso a qualidade deste

trabalho não seria a mesma.

v

Resumo

Linguagens baseadas em Lógicas de Descrição são comumente adotadas como o

esquema padrão para a representação de conhecimento em ontologias. Tipicamente,

uma ontologia formaliza um número de conceitos dependentes e relacionados de um

domı́nio, agrupados como uma terminologia. Como a definição manual de tais ter-

minologias é complexa, consome tempo e ainda é pasśıvel de erros, existe um grande

interesse e demanda por métodos automáticos de aprendizado de terminologias. No

entanto, as abordagens existentes seguem uma estratégia de aprendizado de um

único conceito, desconsiderando dependências que possam existir entre conceitos.

Como consequência, são induzidas terminologias mais complexas e por vezes ileǵı-

veis. Logo, métodos para o aprendizado de vários conceitos dentro de uma tarefa,

respeitando suas dependências são essenciais para a induçao automática de ontolo-

gias compactas e compreenśıveis. Assim, neste trabalho, propomos três estratégias

para o aprendizado de terminologias compostas por múltiplos conceitos relaciona-

dos. Nós empiricamente avaliamos com sucesso todas as três em dois benchmarks e

as comparamos com um algoritmo padrão de aprendizado de conceitos únicos.

Palavras-chave: Aprendizado de Múltiplos Conceitos em Lógicas de Descrição,

Aprendizado de Terminologias, Remoção de Redundâncias em Lógicas de Descrição,

Compressão de Terminologias, Restruturação de Teorias.

vi

Abstract

Description Logics based languages have emerged as the standard knowledge

representation scheme for ontologies. Typically, an ontology formalizes a number

of dependent and related concepts in a domain, encompassed as a terminology. As

manually defining such terminologies is a complex, time consuming and error-prone

task, there is great interest and even demands for methods that learn terminologies

automatically. However, the existing approaches follow a single concept learning

strategy, disregarding dependencies that may exist among the concepts. As a con-

sequence, a more complex and sometimes illegible terminology may be induced.

Thus, methods for learning all the concepts within an unique task, respecting their

dependency are essential for automatically inducing compact and understandable

ontologies. Then, in this work, we propose three strategies for learning a terminol-

ogy composed of multiple related concepts. We empirically evaluated successfully

all of them in two benchmarks and compared them with a standard single concept

learning algorithm.

Keywords: Multiple Concept Learning in Description Logics, Terminology Learn-

ing, Redundancy Removal on Description Logics, Terminology Compression, Theory

Restructure.

LIST OF FIGURES

2.1 Architecture of a knowledge representation system based on Descrip-

tion Logics (Baader and Nutt, 2010). 6

2.2 Example of a DL Knowledge Base using the language AL. 8

2.3 Example of a search tree constructed to create candidates definitions. 14

3.1 The relationship among concepts C

i

and C

j

through their positive

examples sets, represented as Venn diagrams. 21

3.2 An example of a taxonomy depicting the relation among concepts

C

1

, C

2

, C

3

, C

4

and C

5

. 22

3.3 Example 10’s syntactic tree representation. 32

3.4 The syntactical tree representation of ALC’s constructors. 33

4.1 R2D2’s Execution time vs Number of concepts and Terminology size. 47

4.2 F-measure for Exp1 considering scenarios with CDE, CDA, CDT and

DL-Learner (DL-L). 53

4.3 F-measure for Exp2 considering scenarios with CDE, CDA, CDT and

DL-Learner (DL-L). 54

4.4 Size of found terminology for Exp1 and Exp2 with methods CDE,

CDA, CDT and DL-Learner (DL-L). 55

4.5 Size of concepts definitions for Exp1 with methods CDE, CDA, CDT

and DL-Learner (DL-L). 56

viii

4.6 Size of concepts definitions for Exp2 with methods CDE, CDA, CDT

and DL-Learner (DL-L). 56

4.7 Size di↵erence for Exp1 w.r.t. Original Definition with methods CDE,

CDA, CDT and DL-Learner (DL-L). 57

4.8 Size di↵erence for Exp2 w.r.t. Original Definition with methods CDE,

CDA, CDT and DL-Learner (DL-L). 57

4.9 Size di↵erence for Exp1 w.r.t. DL-Learner (DL-L) with methods

CDE, CDA and CDT. 58

4.10 Size di↵erence for Exp2 w.r.t. DL-Learner (DL-L) with methods

CDE, CDA and CDT. 59

5.1 Taxonomy of theory refinement tasks (Wrobel, 1996). 62

LIST OF TABLES

2.1 Syntax and Semantics for DL’s Constructors. (Calvanese, 1996) . . . 7

3.1 Example of the output of a terminology learning task with and without

the independence assumption. 17

3.2 Comparison matrix for solutions: CDE, CDA and CDT. 37

4.1 CDE: Best Threshold Experiment. 44

4.2 CDA’s validation experiment results. 44

4.3 CDT: Results of the validation experiment. 45

4.4 Toy Example results: Concepts Definitions and their sizes found with

the methods CDE, CDA, CDT and DL-Learner (DL-L). 49

4.5 Aggregate Results of Relaxing Completeness Experiment for the methods

CDE, CDA and CDT. 51

4.6 Full Completeness over the individuals Experiment with the methods

CDE, CDA and CDT. 52

4.7 Full Completeness Experiment CDT’s Hits. 52

CONTENTS

1 Introduction 1

1.1 Goals . 3

1.1.1 Concept Dependency through Examples 3

1.1.2 Concept Dependency through Assertions 3

1.1.3 Concept Dependency through Terminology 4

1.2 Organization . 4

2 Background Knowledge 5

2.1 Description Logics . 5

2.2 Inductive Logic Programming (ILP) 9

2.3 Concept Learning in Description Logics 11

2.4 Model’s Simplicity and how it a↵ects its understandability 13

3 Multiple Concept Learning 16

3.1 Concept Dependency through Examples (CDE) 19

3.1.1 Concepts Dependency . 19

3.1.2 Learning Concept Ordering 22

3.1.3 Learning Terminologies through concept ordering 24

3.2 Concept Dependency through Assertions (CDA) 26

3.2.1 CDA with cycle removal . 28

3.3 Concept Dependency through Terminology (CDT) 31

3.3.1 Syntactic Compression using Tree Representation 31

xi

3.3.2 Redundancy Removal on DLs Descriptions (R2D2) 32

3.4 Summary of methods . 37

4 Experiments 41

4.1 Datasets . 41

4.2 Experiments for each individual method 42

4.2.1 CDE: Finding the Best Threshold value 42

4.2.2 CDA . 43

4.2.3 CDT . 44

4.3 Experiments comparing methods . 47

4.3.1 Experimental Methodology . 48

4.3.2 Experimental Results . 49

5 Related Work 60

5.1 Terminology Learning . 60

5.2 Theory Restructuring - R2D2 . 62

6 Conclusions 64

6.1 Contributions . 66

6.2 Future Work . 67

A OWA and CWA and their relationship with inferential and induc-

tive reasoning 74

1 INTRODUCTION

The original intention for the World Wide Web was to provide a distributed col-

lection of documents, connected via Hyperlinks accessible via the Internet. As it is,

the unstructured nature of the information on the Web, although easily accessible

by humans, provides a challenge for machines to e�ciently analyse it. Berners-Lee

et al. (2001) proposes a road map to transform the web from a machine hostile envi-

ronment into a place where machine reasoning can be “ubiquitous and devastatingly

powerful”. This set of ideas is called as Semantic Web.

There are two major challenges to Semantic Web’s usage: i) a standard knowl-

edge representation formalism and ii) the lack of structured knowledge.

Knowledge representation (Brachman and Levesque, 2004) is an important task

when considering applications that require reasoning over a domain. In order for

the machines to be capable of analysing the information available on the Web, the

information must be structured. Ontologies (Staab and Studer, 2010) are formally

defined knowledge bases, and as such they provide the needed structure for the

information on the Semantic Web. OWL Web Ontology Language (OWL)1 has

become a W3C Recommendation in February 2004 and is the current standard for

defining ontologies to the Semantic Web. Since 20122 it is comprised of six profiles

with varying expressiveness. The six profiles are: OWL 2 RDF-Based Semantics,

OWL 2 Direct Semantics, OWL 2 EL, OWL 2 QL, OWL 2 RL and OWL 1 DL.

Its vocabulary can be directly related to the formal semantics of Description Logics

1http://www.w3.org/TR/owl-features/
2http://www.w3.org/TR/owl2-profiles/

2

(DLs) (Baader and Nutt, 2010).

DLs form a family of representational languages, with di↵erent expressive power,

that are typically decidable fragments of first order logic (FOL) (Huth and Ryan,

2004). They represent domain concepts and relations between them.

The lack of readily available ontologies indicates the need for applications that

support the creation and maintenance of them, using existing background knowl-

edge. One way to resolve this challenge is to manually define DL ontologies (also

known as knowledge bases - KB), however this process is time consuming and still

error prone. Therefore, the consideration of mechanisms for automatically learn-

ing (Anderson et al., 1986) a model represented in DL is relevant and sometimes

even demanded. A number of approaches have been proposed in the literature, such

as the algorithms proposed in (Lehmann and Hitzler, 2010), (Fanizzi et al., 2008)

and (Iannone et al., 2007). These algorithms are used to learn the terminological

part of a DL ontology, also known as TBox. Terminologies are used to describe the

concepts of a domain and their relations. However, to the best of our knowledge, the

description logic learning approaches devised so far follow a single learning strategy,

i.e., focus on learning piecewise concepts. When learning multiple concepts, in-

dependent executions of the learning algorithm are performed for each one of the

concepts, thus the information regarding dependencies among them is lost. We ar-

gue that when the several concepts belonging to a DL are learned jointly, the final

terminologies may be more compact, and therefore more useful. Moreover, learn-

ing jointly the concepts may yield more accurate concepts than usual approaches,

since each concept may have in its definition others concepts previously defined, as

a starting point. A relationship of dependency between two concepts occurs when

a concept definition uses another concept. For example, concept C depends on con-

cept D if D appears in C’s definition. Thus, in this work we investigate the following

hypothesis:

If dependencies among the concepts of the domain that need to be

learned are found then clearer and compact terminologies are produced,

3

while their quality is maintained.

In this hypothesis, “quality” refers to the predictive power of the terminology.

1.1 GOALS

In this work, we present three alternatives for identifying concept dependencies

among the group of concept that will be learned, aiming at finding clearer termi-

nologies through their dependencies. These methods are the main contributions of

this work. Next, we briefly introduce them.

1.1.1 CONCEPT DEPENDENCY THROUGH EXAMPLES

Concept Dependency through Examples ’s (CDE) (Melo et al., 2013b) solution

devises a learning order suitable for finding dependencies among the group of con-

cepts that will be learned. The learning order is extracted from a taxonomy built

from the learning tasks examples. The intersection between sets of examples indi-

cates a relationship between the concepts, based on this the taxonomy models the

subsumer/subsumee relationship between concepts.

A learning order may yield terminologies with dependencies among the learned

concepts because the concepts learned in an iteration can utilize concepts defined in

previous iterations.

Because of the way the taxonomy is built and traversed to extract the learning

order, CDE has a preference to express dependencies using conjunctions.

1.1.2 CONCEPT DEPENDENCY THROUGH ASSERTIONS

The second method, Concept Dependency through Assertions ’s (CDA) (Melo

et al., 2013a)3 allows the use of concepts not yet defined, in the form of assertions,

during the learning of other concepts, thus enabling the discovery of dependencies.

These assertions are used as surrogates for the latter found definitions. They are

created based on the learning task’s examples, and latter added into the background

knowledge as facts that can be used while learning other concepts. The use of

3Named MCL on its first appearance.

4

these assertions allows for a greater diversity in the types of ways to express the

dependencies among the concepts, w.r.t. those found by CDE.

1.1.3 CONCEPT DEPENDENCY THROUGH TERMINOLOGY

Concept Dependency through Terminology ’s (CDT) (Melo et al., 2014)4 identi-

fies dependencies by finding redundancies within a terminology. A redundancy is

characterized when a section within a concept definition is equivalent to the full def-

inition of another concept. The substitution of a section by its equivalent concept

yields a smaller terminology while maintaining the same semantics. This method

can be applied after a terminology is obtained, be it via a manual definition of a

terminology learning task, hence its name.

The three proposed methods were implemented as packages using the program-

ming language Java and are available at https://github.com/raphael-melo/mcl.

An experimental evaluation was conducted comparing the three approaches.

Moreover, we compared them to DL-Learner (Lehmann and Hitzler, 2010), a frame-

work that performs single concept learning tasks, showing the benefits of a multiple

concept learning algorithm over a single concept learning algorithm.

1.2 ORGANIZATION

This master dissertation is organized as follows. Chapter 2 presents the back-

ground knowledge necessary to understand the proposed approaches. In Chapter 3,

our three approaches for multiple concept learning are described in detail. Chapter 4

presents the experiments conducted to validate our proposals. Chapter 5 presents

the works related to this research. Finally, Chapter 6 presents the closing remarks

of this research, a summary of the contributions and directions for future work.

4Called Redundancy Removal on DLs Descriptions (R2D2) on its first appearance.

2 BACKGROUND KNOWLEDGE

In this chapter we present the background knowledge necessary to understand

this work. First we present the foundations of Description Logics, discussing its

syntax and semantics. A firm grasp of DLs is necessary to fully understand the

proposed methods.

Secondly we present the problem of learning a concept definition. First the ideas

of Inductive Logic Programming are shown, because it provides the bases for concept

learning in Description Logics, defined just after.

Lastly, we present formal arguments supporting the motivation for methods that

simplify terminologies and the relationship between simplicity and understandability.

2.1 DESCRIPTION LOGICS

Description Logics (DL) (Baader and Nutt, 2010) is the name given for a family

of knowledge base representation (KR) formalisms used to represent domain knowl-

edge by defining a terminology (the relevant concepts in the domain), then using

these concepts to describe properties of individuals in the domain. The terminology

and the information about the individuals form the knowledge base (KB). Descrip-
tion Logics contains a formal logic-based semantics, hence its name. DLs are also

characterized by its focus on reasoning as a service: allows the inference of implicit

knowledge from the explicit knowledge contained in the knowledge base (KB). It has
two reasoning services: i) classification of concepts and ii) classification of individu-

als. The classification of concepts determines subconcept-superconcept relationships

6

Figure 2.1: Architecture of a knowledge representation system based on Description
Logics (Baader and Nutt, 2010).

between them (also called subsumption relationship in DL). The classification of in-

dividuals determines, based on the properties of the individual, whether it is an

instance of a certain concept.

Description Logics are useful for Semantic Web because, unlike First Order Logic

(FOL) theories, they are decidable, i.e., a query is always answered, either positive

or negatively. However, the decidability and complexity depends on the Description

Logic language chosen. There is a tradeo↵ between expressiveness and the reasoning

complexity. A higher expressive power incurs in a higher reasoning complexity, on

the other hand, a lower expressive power incurs in a lower reasoning complexity.

A Knowledge Base (KB) has two components: a TBox and a ABox. The TBox

contains the terminology, i.e., the domain’s vocabulary, while the ABox contains

assertions about the individuals using the terms defined in the terminology. Fig. 2.1

displays the architecture of a knowledge representation system based on Description

Logics.

Atomic concepts and roles are the elementary descriptions. Complex descrip-

tions, or descriptions in short form, can be built from them using concept con-

structors. DLs languages are distinguished by the set of constructors they provide,

therefore the expressiveness of a DL is tied to its set of constructors. In the re-

7

Table 2.1: Syntax and Semantics for DL’s Constructors. (Calvanese, 1996)

Constructor’s Name Syntax Semantics

atomic concept A A

I ✓ DI

universal concept > DI

bottom concept ? ;

atomic negation ¬A DI
/A

I

intersection C uD C

I \D

I

value restriction 8R.C {o|8o0 : (o, o0) 2 R

I ! o

0 2 C

I}

limited existential quantification 9R {o|9o0 : (o, o0) 2 R

I}

existential quantification E 9R.C {o|9o0 : (o, o0) 2 R

I ^ o

0 2 C

I}

disjunction U C tD C

I
1 [D

I
2

general negation C ¬C DI
C

I

qualified number restrictions Q
9�m

R {o|#{o0|(o, o0) 2 R

I} � m}

9n
R {o|#{o0|(o, o0) 2 R

I} n}

well-founded W wf(R) {o0|8o1, o2, . . . (adinfinitum)9i � 0 : (oi, oi+1) 62 R

I}

role value map V R1 ✓ R2 {o|{o0|(o, o0) 2 R

I
1 } ✓ {o0|(o, o0) 2 R

I
2 }}

role name R R

I ✓ DI ⇥DI

inverse I R

� {(o, o0)|(o0, o) 2 R

I}

union R R1 [R2 R

I
1 [R

I
2

concatenation R R1 �R2 R

I
1 �R

I
2

reflexive transitive closure R R

⇤
(R

I
)

⇤

identity R id(C) {(o, o)|o 2 C

I}

di↵erence D R1\R2 R

I
1 \RI

2

mainder of this work we use the letters a, b, a

1

, b

1

, . . . for individuals ; the letters

A,B,A

1

, B

1

, . . . for atomic concepts, the letters R,R

1

, . . . for atomic roles and the

letters C,D,C

1

, D

1

, . . . for concept descriptions. An assertion has the form C(a)

(concept assertion) or R(a, b) (role assertion),

Table 2.1 displays the syntax and semantics for various DL constructors. The

first column specifies the constructor’s name. The second column specifies the letter

that denote the constructor when naming the logic. The syntax of each constructor

is given in the third column.

The language AL - Attributive Language (Schmidt-Schauss and Smolka, 1991)

is the minimal DL language. Its constructors are the set within Table 2.1 with no

8

Figure 2.2: Example of a DL Knowledge Base using the language AL.

letter associated. The other DL languages are extensions of AL. Example 1 shows

how a definition in natural language can be translated into a concept description

using the language AL, while Fig. 2.2 shows an example of a complete KB.

Example 1. Let the natural language definition for the “Father” concept, in the

kinship domain, be:

“Father is a male parent”; one can define its concept description as:

Father ⌘ male u 9Parent.>

The forth column of Table 2.1 displays the semantics for the constructors. The

semantics of a description is given by a domain D (a set) and an interpretation ·I (a

functor). Individuals represent individuals through names from a set NI = {a, b, . . .}.
Each concept in the set NC = {A,B,C,D,A

1

, B

1

, . . .} is interpreted as a subset of

a domain D (Example 2). Each role in the set NR = {R,R

1

, . . .} is interpreted as a

binary relation on the domain (Example 3).

Example 2. The interpretation of the concept “Male”, based on the KB present in

Figure 2.2, is the following:

Male

I = {ALFRED,CARL}

9

Example 3. The interpretation of the role “Married”, based on the KB present in

Figure 2.2, is the following:

Married

I = {(CARL,BEATRICE), (BEATRICE,CARL)}

An interpretation I satisfies an inclusion axiom C v D if CI v D

I , and it

satisfies an equality axiom C ⌘ E if CI = E

I . An interpretation that satisfies all

axioms in a terminology T is called a model of T . A finite model is a model with

finite domain. A concept description C is (finitely) consistent in T if T admits a

(finite) model I such that CI 6= ; and C is (finitely) subsumed by D in T if CI ✓ D

I

for every (finite) model I of T (Calvanese, 1996).

Moreover, in this master dissertation, we assume the common assumption made

about DL terminologies: (i) there is only one definition for a concept name and (ii)

concept definitions are acyclic.

2.2 INDUCTIVE LOGIC PROGRAMMING (ILP)

Modeling the knowledge of a domain is an essential task in computer and informa-

tion science. However, manually formalizing the domain knowledge is an expensive

and still an error prone task, even more because the domain experts themselves

do not always agree about definitions and their relationships (Maedche and Staab,

2001). Therefore, in order to e↵ectively exploit such terminologies it is necessary to

apply techniques from machine learning (Mitchell, 1997) for automatically inducing

terminologies from data.

Inductive Logic Programming (ILP) is a research field in the intersection of

machine learning and logic programming (Lavrac and Dzeroski, 1994; Muggleton

and De Raedt, 1994). ILP research has the goal of finding learning algorithms for

inducing logic programs that represents relational definitions.

Logic Programming is a programming paradigm based on formal logic. It uses a

strict form of First-Order Logic (FOL) theories, where sentences can only be clauses

(disjunction of literals1) with at most one positive literal. These types of clauses are

1A literal is a predicate or the negation of a predicate.

10

known as Horn Clauses (Horn, 1951).

A Horn Clause with exactly one positive literal is a called a definite clause. A

definite clause with no negative literal is called a fact. A Horn Clause with no

positive literal is called a goal clause.

Formally defined logical theories are useful because of the ability to infer new

implicit knowledge that follows from the explicit background knowledge BK (infer-

ential reasoning). The rules of inference defines that given a sentence (or a set of

sentences) with certain properties a sentence (or a set of sentences) can be derived

as a conclusion. A rule is sound when it preserves the truth-value for any inter-

pretation, a rule is also complete if every logically valid sentence is derivable. The

inference of new information is done through a set of sound inference rules.

The Resolution rule was presented by Robinson (1965). Resolution is a valid

inference rule (sound and complete), that can, without any other inference rule, be

used to build a sound and complete theorem proving method. Iteratively applying

the resolution rule in a proper way allows for finding if a FOL clause is satisfiable.

Horn Clauses are important because their properties2 leads to an e�cient theo-

rem proving method (Dowling and Gallier, 1984).

ILP methods has as goal to find a hypothesis H that best defines a given set of

positive and negative examples taking into account a background knowledge (BK)

(Definition 1). The hypothesis, BK and examples are logical programs.

Definition 1 (Concept Learning in ILP (Muggleton and De Raedt, 1994)). Given:

• a base theory BK (a logical program with Horn clauses);

• a set of positive examples E+;

• a set of negative examples E�;

Find a logical program H on which the following conditions hold:

• every positive example e 2 E+ is covered by H ^ BK (complete);

2The resolvent of two Horn Clauses is itself a Horn Clause; the resolvent of a goal clause and a
definite clause is a goal clause.

11

• no negative example e 2 E� is covered by H ^ BK (consistent).

An example is covered by a logical program H if it can be logically inferred from

it.

The problem of solving a ILP learning task can be regarded as a search problem,

where the space of solutions are: (i) the “well formed” set of hypotheses and (ii) a

acceptance criterion for the candidate hypotheses3.

2.3 CONCEPT LEARNING IN DESCRIPTION LOGICS

Since concepts are the basic components of terminologies, the first attempt on

machine learning would be how to learn a concept definition from available data.

This is called Concept Learning in Description Logics, henceforth Concept Learning

(CL). A number of algorithms together with implementations have been proposed

in the literature (Lehmann and Hitzler, 2010; Fanizzi et al., 2008; Lehmann, 2009;

Iannone et al., 2007). Concept Learning and ILP have a similar relationship as

DL and Logical Programming, respectively. As such Concept Learning research has

been heavily influenced by the developments within ILP.

When learning a concept, one has as goal of finding a generalized and correct

definition of such a concept from a set of examples, as defined below:

Definition 2 (Concept Learning). CL(C
T

, E ,KB) or CL

CT for short.

Given:

• a knowledge base KB;

• a target concept C
T

such as C
T

/2 KB;

• a set of target examples E , typically divided into positive (E
p

) and negative

(E
n

) examples, such that E = E
p

[E
n

Find a definition C for the concept C
T

such that:

• KB[C |= E
p

(complete);

3Along with coverage, parsimony is also a goal, i.e., smaller theories are preferable.

12

• KB[C 6|= E
n

(consistent);

• C

T

2 C

TS
4, C

TS = {C
T

, C

T1 , . . . , CTn}, length(C
T

) length(C
Ti) for i =

1, . . . , n (parsimony)5

Definition 3 (Length). Length is the sum of all constructors and concepts presented

in a concept definition after the equivalence symbol (⌘), e.g., A ⌘ B uC uD has a

length of 5.

Definition 4 follows if a concept definition found is both complete and consistent.

Definition 4 (Consistency between adding examples and concept definition). If

definition C for the target concept C
T

, with the set of examples E
T

= E
Tp [ETn, is

found, then KB[C [E
Tp [ETn is consistent and semantically equal to KB[C

An algorithm for concept learning is usually composed of the following ele-

ments (Lehmann and Hitzler, 2010)

• a refinement operator that builds the search tree of concepts;

• a search algorithm that controls how this search tree is traversed;

• a scoring function that evaluates the nodes of the tree and to point out the

best current concept candidate.

The refinement operator allows one to find candidate concept definitions through

two basic tasks: generalization and specialization (Lehmann and Hitzler, 2008a).

Such operators in both ILP and description logic learning rely on subsumption to

establish an ordering so as to traverse the search space. If a concept C subsumes

a concept D (D v C), then C covers all examples which are covered by D, which

makes subsumption a suitable order. Arguably the best refinement operator for

description logic learning is the one available in the DL-Learner system (Lehmann

and Hitzler, 2008a, 2010).

4The set of possible solutions.
5Within Concept Learning this is viewed as a general goal more than as a requirement.

13

In a deterministic setting, a covering relationship simply tests whether, for given

candidate concept definition (C), a given example e holds; that is, KB[C |= e where

e 2 E
p

or e 2 E
n

. In this sense, a cover relationship cover(e,KB,C) indicates whether
a candidate concept covers a given example (Fanizzi et al., 2008). In DL learning,

one often compares candidates through scoring functions based on the number of

positive/negative examples covered. In DL-Learner a fitness relationship considers

the number of positive examples and negative examples covered as well as the length

of solutions when expanding candidates in the tree search.

The learning algorithm depends basically on the way we traverse the candi-

date concepts obtained after applying refinement operators. In a deterministic set-

ting the search for candidate concepts is often based on the FOIL (Quinlan and

Cameron-Jones, 1993) algorithm. There are also di↵erent approaches (for instance,

DL-Learner, an approach based on genetic algorithms (Lehmann, 2007), and one

that relies on horizontal expansion and redundancy checking to traverse search

trees (Lehmann and Hitzler, 2008b)).

The refinement operator is responsible for generating candidate definitions for the

target concept. Candidate definitions are generated by joining DL’s constructors,

concepts and roles available in the KB, this is illustrated in Example 4.

Example 4. Let KB be as presented in Figure 2.2 and the concept learning task

be CL(SINGLEFATHER, E
SF

,KB). The E
SF

is composed of E
P

= {ALFRED}
and E

N

= {BEATRICE,CARL}. A sound concept definition found could be

SINGLEFATHER ⌘ Father u 8Married.?.
Figure 2.3 depicts the tree of candidates definitions.

2.4 MODEL’S SIMPLICITY AND HOW IT AFFECTS ITS

UNDERSTANDABILITY

Historically simplicity has been a hallmark of philosophical and later scientific

descriptions. Occam’s razor6, or Lex Parsimoniae is a logical principle taken as a

6Johannes Poncius is the 17th scholar responsible for the classical formulation

14

Figure 2.3: Example of a search tree constructed to create candidates definitions.

tenet of the modern philosophy of science. Aristotle’s Posterior Analytics /refaris-

totle:posteriorAnalytics summarizes the parsimony principle:

“We may assume the superiority ceteris paribus (all things being equal)

of the demonstration which derives from fewer postulates or hypotheses.”

The parsimony principle is a way to choose between competing hypotheses. In

principle, the parsimony’s primacy cannot be empirically proved. However, it is

built upon an intuition on the nature of reality.

The ideas proposed in the philosophy of science are used to create machine

learning methods for inductive reasoning (Muggleton and De Raedt, 1994), such as:

Inductive Logic Programming and Concept Learning7. Thus, one can argue that the

preference for simpler theories or terminologies should be maintained.

In (Sommer, 1995a), the author presents some intuitions on how simplifying a

theory can cause it to be more understandable. It does so by appealing to an analogy

between logic theories and free text. Textual sentences can be seen as a metaphor

for logical predicates. Assuming this relationship, the paper continues to show that

within linguistics and psychology (psycholinguistics) there is an inverse relationship

between the complexity of the text and its understandability. The paper presents a

7Both particularly relevant to this work.

15

set of intuitions to define how understandable a theory is, this set can be summarized

in:

1. A deeper theory is preferable to a shallow one.

– The depth of a theory is the maximum number of inferences required to

answer a goal query.

2. The longer the concept, the harder it is to understand it.

3. The more redundant a theory is, the less inclined one would be to accept it.

Sommer (1995a) presents another interesting argument as to why understand-

ability should be considered in the machine learning setting. Artificial intelligent

(AI) systems may be divided into (i)symbolic, such as: logical programs and on-

tologies, and (ii)subsymbolic, such as: neural networks and genetic algorithms, with

regards to inspectability (Smolensky, 1987). In symbolical AI a model consists of

symbols meant to be interpreted by humans. As a consequence, when a symbolic

model is learned it can be inspected, interpreted and understood, and even lead to

new insights about the domain. However, with subsymbolic AI a good solution is es-

sentially a black box. Hence, when dealing with symbolic models understandability

is a desirable trait.

Simplicity onto itself is a worthy goal of machine learning, however it should not

be argued that choosing a simpler terminology over a more complex yield a better

accuracy (Domingos, 1998). In this work, we have the main goal of learning termi-

nologies that are more understandable (shorter) while still maintaining a comparable

accuracy.

3 MULTIPLE CONCEPT LEARNING

In section 2.3 we presented the learning process for a single concept in Defini-

tion 2. Definition 5 presents the formal definition of the terminology learning task.

Definition 5 (Terminology Learning). Let:

• T L be the terminology learning task, where T L = {CL

C1 , . . . , CL

Cn}.

• CL

Ci be the concept learning task, CL(C
i

, E
Ci ,KB).

• KB be the shared knowledge base for all concept learning tasks in T L.

• T be the terminology after the terminology learning task is completed.

For each CL

Ci 2 T L, find a concept definition C

i

according to definition 2.

Then, T = KB[C
1

[. . . [C

n

.

When approaching the task of learning a terminology one could use two solution

types: i) learning the concepts without including dependencies between concepts

(independence assumption) or ii) learn the concepts regarding dependencies, hence-

forth called Multiple Concept Learning (MCL).

Suppose the following problem: we want to learn new concepts descriptions

related to an existing terminology of the kinship domain (Fig. 2.2). The set

of concepts we wish to learn is T L = {CL(GRANDPARENT(GP), E
GP

, KB),
CL(GRANDMOTHER(GM), E

GM

, KB)), CL(GRANDFATHER(GF), E
GF

, KB)}.
In order to learn each concept’s description we have to define appropriate concept

learning tasks for each concept in T L. As previously defined, a concept learning

17

task is composed by a set of examples E =< E
p

, E
n

> and the background knowledge

KB. Because all concepts in T L belong to the same domain, the KB can be shared.

Suitable sets are examples need to be created using the individuals described in the

KB. After all this, we have defined a terminology learning task T L.

After that we can learn definitions for each concept in T L independently. How-

ever, because of our familiarity with the knowledge domain we know that depen-

dencies between the concepts in T L exists, for example, a proper definition for

GRANDMOTHER can utilize GRANDPARENT.

Table 3.1: Example of the output of a terminology learning task with and without
the independence assumption.

Concept With Independence Assumption Without

GP 9PARENT.9PARENT.> 9PARENT.9PARENT.>
GM FEMALE u 9PARENT.9PARENT.> FEMALE uGP

GF MALE u 9PARENT.9PARENT.> MALE uGP

Table 3.1 displays the results for the terminology learning task while uphold

the independence assumption, and while regarding the dependencies among the

concepts being learned. From this example we can see a suggestion that when

the independence assumption is removed, the induced terminology is more compact

and readable. This example inspired our hypothesis: “If dependencies among the

concepts of the domain that need to be learned are found then clearer and compact

terminologies are yielded while their quality is maintained.”

In this work, we present three alternatives for identifying concept dependencies

aiming at finding more clear terminologies through their dependencies. They are:

• Concept Dependency through Examples (CDE): Devises a learning order suit-

able for finding dependencies. The order is extracted from a taxonomy built

from the set of learning examples. The concept learned at iteration i can be

included in the definition of concepts learned at iterations > i.

• Concept Dependency through Assertions (CDA): Allows the use of concepts

that are not yet defined, in the form of assertions, during the learning of other

18

concepts, thus enabling the discovery of dependencies.

• Concept Dependency through Terminology (CDT): Uses the redundancies found

within a terminology to indicate when a dependency exists. A redundancy ex-

ists when a section within a definition can be replaced by another concept

definition without any impact on the semantics. The terminology may already

exist or be the output of a terminology learning task.

The methods CDE and CDA have a greater relationship to the concept learn-

ing process behaviour than CDT, specifically with its refinement operator. Candi-

date definitions are generated by the refinement operator using the DLs language

constructors and KB’s content. If, within a terminology learning task, a concept

definition that was learned in a previous step is added to KB it can be used while

learning the next concepts. Next we have the definition for ensuring the shortest

concept description within the MCL setting:

Definition 6 (Ensured Shortest Concept Description within MCL). The shortest

concept description for CL

Ci 2 T L, T L = {CL

C1 , . . . , CL

Cn}, i = 1, . . . , n is:

CL(C
i

, E
i

,KBS
n

i=1

ST /CL

Ci),

where:

• ST is the set containing the solution for each CL

Ci 2 T L;

• ST /CL

Ci is ST minus the solution for CL

Ci.

When a concept is learned after all the other concepts in the terminology learning

task, its learning process will have the largest amount of information compared to

any of the other concepts in the terminology learning task, because it will have avail-

able the background knowledge and descriptions of all concepts learned in previous

iterations. This ensures that any last concept will have the shortest description pos-

sible within its MCL setting, because if the best description for a concept contains a

group of axioms that are equivalent to any other concept in the terminology learning

task, the learning process can replace the group by the concept name, thus yielding

19

a shorter description. However, the best definition for a concept might not depend

of all the other concepts in the terminology learning task. Thus, we can define the

shortest concept description as:

Definition 7 (Shortest Concept Description within MCL). The best(CL

Ci) for

CL

Ci 2 T L, T L = {CL

C1 , . . . , CL

Cn}, i = 1, . . . , n is:

CL(CL

Ci , E i

,KBS
n

i=1

{ST \ best(CL

Ci).contains}),
where:

• ST is the set of solutions for T L;

• best(X) is the shortest description for concept learning task X;

• X.contains is the set of concepts used in description X.

In the following sections we will present the methods for Multiple Concept Learn-

ing without the independence assumption in DL.

3.1 CONCEPT DEPENDENCY THROUGH EXAMPLES (CDE)

As seen in definition 7 the shortest solution for a concept learning task is yield

when it is learned after all the concepts it depends on. In this section, we argue that

finding out the subsumption relationship between concepts makes it is possible to

yield an ordering of the concepts, which in return will support the learning of a rich

– although simple and easily understandable – terminology. The question that arises

is how to obtain a subsumption order from concepts that do not have definitions

yet, i.e., before their definitions are learned. We tackle this problem by developing a

procedure capable of finding out the relations among concepts before learning them,

by taking advantage of their set of examples.

3.1.1 CONCEPTS DEPENDENCY

When using machine learning techniques to learn concepts, the examples are a

mandatory component of the process, they mold the learned concept definition, dis-

tinguishing one concept from another. Because of the completeness and consistency

20

properties of the concept learning, the set of positive and negative examples provide

strong evidence for the existence of dependencies and relationships among concepts.

Thus, in this section we present a pre-learning phase MCL method based upon the

set of examples for discovering concept dependency.

Let CL(C
i

, {E
p

i

, E
n

i

},KB) and CL(C
j

, {E
p

j

, E
n

j

},KB) be the concept learning

tasks for concepts C
i

and C

j

respectively. After learning these concepts, their def-

initions will be part of the KB’s TBox. Therefore, a comparative analysis of the

individuals belonging to E
p

i

and E
p

j

points out how strongly related the correspond-

ing concepts are and what might be the best order (4) for learning them. Briefly,

we argue that high similarity on the positive examples sets indicates high similarity

between concept definitions. Example 5 illustrate this point.

Example 5. Let CL(C
1

, E
1

,KB), E
1

=< E
p

1

, E
n

1

> and CL(C
2

, E
2

,KB), E
2

=<

E
p

2

, E
n

2

>. Also, E
p

1

= {john,bob,edd} and E
p

2

= {bob} be the set of positive ex-

amples for concepts FATHER and GRANDFATHER, respectively. E
p

2

✓ E
p

1

, then

the definition of concept FATHER will include more individuals then the definition

of concept GRANDFATHER, thus being more general. Therefore, we argue that

in the GRANDFATHER’s definition the concept FATHER can be used, but not the

other way around. Thus, if FATHER is learned and added to KB before learning

GRANDFATHER, then FATHER can be used to compose the definition of GRANDFATHER.

A learning order is then established between the two concepts:

(FATHER 4 GRANDFATHER).

The comparative analysis between two concepts (C
i

and C

j

) through their sets

of positive examples comprises the following cases (Fig. 3.1 illustrates these cases):

1. Identical sets (C
i

⌘ C

j

): all elements belonging to one set also belong to the

other set;

2. Disjoint sets (C
i

\ C

j

= ;): both sets have no elements in common;

3. Inner set (C
i

✓ C

j

): one set is a subset of the other;

21

Figure 3.1: The relationship among concepts C

i

and C

j

through their positive ex-
amples sets, represented as Venn diagrams.

4. High intersection: the proportion of shared elements overcomes a threshold;

5. Low intersection: the proportion of shared elements does not overcome a

threshold.

We claim that the higher is the intersection between sets of positive examples the

greater is the relationship between the concepts. Thus, case 1 describes an upper

limit, where the concepts are totally related, while case 2 indicates a lower limit,

where the two concepts have no relationship. Furthermore, cases 1, 2 and 3, are the

ideal cases because the underlying relationships between concepts are clear; on the

other hand, the cases 4 and 5 need some mapping to one of the ideal cases, as “high”

and “low” depends upon the observer. This is accomplished via a threshold value

that will indicate how the concepts are related to each other. Therefore, the case 3

is a special case of 4, when the threshold is equal to 1; the case 2 is a special case of

5, when the threshold is equal to 0.

In this way, the relations among all concept definitions may be obtained from the

comparative analysis of each pair of concepts that belong to the terminology learning

task T L. The resulting explicit relations among the concepts are translated to a

subsumption tree (a taxonomy). For instance, consider the taxonomy depicted in

Figure 3.2 for domain D and set of concepts N
C

= {C
1

, C

2

, C

3

, C

4

, C

5

}.
The root node indicates the set of all individuals of the domain D (> concept).

A concept in a branch on level i is more general than a concept on the same branch

22

Figure 3.2: An example of a taxonomy depicting the relation among concepts
C

1

, C

2

, C

3

, C

4

and C

5

.

in level j, thus concept C
1

is more general than concept C
3

. Assuming that a more

general concept can be used in the definition of a more specialized one, the latter

should be learned first. Thus, the resulting taxonomy of the concepts can be used

to determine the best ordering to learn the concept definitions.

3.1.2 LEARNING CONCEPT ORDERING

In Section 3.1.1, five possible results were detected after analyzing the relations

between two concepts (C
i

and C

j

) through their sets of positive examples. From

the first three cases, it is possible to directly acquire the relationship between the

concepts. The two remaining cases requires a further analysis, aiming at deciding

whether a subsumption relation is assumed or a total independence between C

i

and

C

j

is a better choice. In this section, a procedure concerning the five possibilities is

devised, which leads to a taxonomy of concepts.

Algorithm 1 presents the top-level procedure for building a taxonomy of concepts

that is used to define an order for learning the concepts of a terminology.

The algorithm receives as input a terminology learning task, as outlined in Defi-

nition 5, and returns a taxonomy of its concepts. Given the ordering tree, a concept

can only be defined if all its parents have already been defined. The root of the tree

is a default concept which must be the father of all the concepts in T L.

This algorithm starts by creating a tree with only the root. Next, each concept

23

Algorithm 1 Algorithm for learning a taxonomy of concepts

Require: a terminology learning task (T L =< CL

C1 , CL

C2 , . . . , CL

Cn >, where all
CL

Ci ⌘ CL(C
i

, E
i

,KB) is a concept learning task for concept C
i

Ensure: a taxonomy of concepts T
1: Starts T with the concept > in the root;
2: Add each concept C

i

considered in T L as a child of the root;
3: for each CL

C

i

, CL

C

j

2 T L do
4: T call Algorithm 2 with CL

C

i

, CL

C

j

, T
5: end for
6: return T

(C
i

) corresponding learning task (CL

C

i

), where CL

C

i

2 T L, is included in the tree

as child of the root. Then, Algorithm 2 is called for each pair of concepts C

i

and

C

j

in order to find their relationship. After checking each possible dependency, the

final taxonomy of concepts is returned.

In Algorithm 2 the relationship between the positive examples (E
p

) sets of the

two concepts are analyzed in order to resolve in which of the five cases discussed

in Section 3.1.1 it belongs. The algorithm begins by creating a variable that holds

the amount of shared individuals between the example sets (line 1). The first case

checked (line 2) is the one with two equivalent concepts, if that is the case the

taxonomy is not modified, remaining the same as the previous iteration. In this

way, both concepts are maintained unchanged in the resulting taxonomy, which

makes possible to learn a proper definition for each one of them, even though they

share the same set of positive examples. An alternative choice would be to keep only

one of them in the taxonomy and later indicate in the terminology their equivalence.

We chose the former because it is generally the case that the negative examples could

be responsible for pointing out a di↵erent definition for each one of them.

Next, the algorithm verifies whether the concepts are disjoint (line 6). If this is

the case, then there is no relationship between the concepts and the taxonomy is not

changed. In case the set of positive examples associated to one concept is a subset

of the other (line 9, 13), a relationship between them is included in the taxonomy.

The subsumee concept is put as a child of the subsumer in the tree. Moreover, the

24

edge connecting the subsumee concept and the root is removed, as it is no longer

necessary.

The two remaining decision are made according to the size of the intersection

set between the two concepts. To decide whether the intersection is high or low, we

employ a threshold parameter, that needs to be set before starting the process. The

amount of intersection is computed by selecting the concept with less examples and

dividing the number of shared individuals by its examples set size (line 24). In case

this value is higher than the threshold, the procedure assumes that a relationship

exists and the concept with more examples is included in the taxonomy as the

subsumer, while the concept with less examples is included as its subsumee (line 25);

again the relationship between root and the subsumee is removed. An important

thing to notice is that only the root is removed as a parent of the subsumee concept;

all the other parents it may have are maintained, such that the right order can be

obtained.

3.1.3 LEARNING TERMINOLOGIES THROUGH CONCEPT

ORDERING

Algorithm 3 presents the overall procedure for learning a terminology. It requires

as input the terminology learning task T L. As in our method it is necessary to find

a taxonomy tree, so that a concept ordering is induced from such a tree, the first

step of the algorithm is to call the procedure devised as Algorithm 1, which is going

to return the tree comprising each concept addressed by the terminology problem.

Next, it is necessary to establish the order that the algorithm will follow to

learn each concept description. This is done by traversing the tree in a breadth-

first manner, and collecting all nodes at a level in order. For instance, considering

the taxonomy in Figure 3.2, the concepts would be learned in the following order

< C

1

, C

2

, C

3

, C

4

, C

5

>. In this way, it is possible to guarantee that a concept is only

handled after the descriptions for all its parents have been learned. This method

allows for the discovery of unpredicted relationships because as ordering is devised

between concepts in the same taxonomic level. Di↵erent treatment of same level

25

Algorithm 2 Algorithm for Ascertaining Dependencies among Concepts in a Ter-
minology

Require: Concept learning tasks CL(C
1

, {E
p

i

, E
n

i

},KB) and
CL(C

j

, {E
p

j

, E
n

j

},KB); a taxonomy T .
Ensure: An updated taxonomy T
1: sharedIndividuals 0
2: if C

i

⌘ C

j

then
3: return T
4: end if
5: sharedIndividuals |E

p

i

\ E
p

j

|
6: if sharedIndividuals = 0 then
7: return T
8: end if
9: if E

p

i

✓ E
p

j

then
10: include C

j

as father of C
i

in T
11: remove ROOT from C

i

parents set
12: end if
13: if E

p

j

✓ E
p

i

then
14: include C

i

as father of C
j

in T
15: remove ROOT from C

j

parents set
16: end if
17: if |E

p

i

| |E
p

j

| then
18: smaller concept C

i

19: larger concept C

j

20: else
21: smaller concept C

j

22: larger concept C

i

23: end if
24: if (sharedIndividuals / |smaller concept| � threshold) then
25: include larger concept as father of smaller concept in T
26: remove ROOT from smaller concept parents set
27: end if
28: return T

26

Algorithm 3 Top-Level Algorithm for Learning Terminologies

Require: A terminology learning task T L.
Ensure: A Terminology T E
1: find a Taxonomic Tree T through Algorithm 1
2: find an Ordered Sequence AS of concept learning tasks T L using T , where

concepts only come after their parents
3: for each C

k

2 AS , in the established order do
4: learn a description C

k

from CL

C

k

, using any algorithm that learns concepts
in Description Logics

5: include C

i

in KB for all C
i

2 AS where i > k

6: end for
7: return T E

concepts could be devised, however, this is not the main goal of the taxonomy.

Finally, each concept is learned gradually in order, through a loop that visits the

concept learning task in the order defined in the second main step of the algorithm.

To learn a description, the concept itself, its positive and negative examples and

the current background knowledge are submitted to a description logic learning

algorithm, such as DL-Learner (Lehmann and Hitzler, 2010), DL-FOIL (Fanizzi

et al., 2008) or Yin-Yang (Iannone et al., 2007). Then, the description found is

included in the TBox of each KB of the following CL

C

i

, so that it can be used in

next iterations of the loop, as part of other descriptions. In this way, the learning

algorithm can learn concept’s definitions according to the dependencies found in

in Algorithm 2, in a rather ideal order discovered from the tree learned by the

Algorithm 1. The algorithm ends by returning the terminologies learned at each

step of the loop.

3.2 CONCEPT DEPENDENCY THROUGH ASSERTIONS (CDA)

As shown in definition 6 the shortest description for a single concept learning task

within a terminology learning task is obtained when it is learned after all the other

concepts, or when it is learned after all concepts it might depend on (definition 7).

In summary it must find an answer for:

“What is the learning order that yields the shortest terminology?”

27

From definition 6, if it were possible to guarantee ST /CL

Ci for any i we could

find the best possible solution for the terminology T 1. On this section we provide a

di↵erent view on the terminology learning problem, arguments and scenarios where it

would be possible to obtain ST /CL

Ci for any i. Furthermore, if that is possible, then

the concept learning mechanism will be the sole responsible for the dependencies.

The question that arises is: “how can the definition for C
j

be found before being

learned?” In the remainder of this section we argue that under some conditions is

possible to obtain a“definition” for C
j

previous to its learning. Definition 8 underline

the set of conditions under which this is possible.

Definition 8 (CDA’s Restrictions). The following are restrictions for the proper

work of the method CDA:

1. The background knowledge is a finite model.

2. For every concept C in terminology learning task T L and every individual I

relevant to the concept C, I 2 E
PC or I 2 E

NC .

The domain owner has to investigate if it is possible or desirable to uphold

restriction 2. Naturally upholding this restriction may be reasonable because the

amount of information on E tends to yield better results.2

When CDA’s restrictions are uphold, because of the idea presented in definition 4,

its possible to use the sets of examples E
i

of each concept learning task within a

terminology learning task T L = CL

C1 , . . . , CL

Cn , as a surrogate for the definition

that will be found later with no semantic lost. There is no di↵erence with regards to

the result obtained from the reasoning services for a query C(a), if it is an assertion

(ABox) or this follows from the terminology (TBox.)

This has an added benefit that each concept learning task can be executed inde-

pendently, allowing for parallel learning of each concept.

Example 6 shows the output of the terminology learning task for the set of con-

cepts {GRANDPARENT(GP), GRANDMOTHER(GM), GRANDFATHER(GF)}.
1Contingent upon SCL returning the best solution.
2This is a general principle on Machine Learning: The amount of relevant information positively

a↵ects the quality of learned models.

28

With CDA’s local goal, it is possible to find the shortest description for each concept

(notice GP). This spurs the rise of a problem as depending on the set of concepts,

cycles may be formed3. This goes against one of the general assumption we need to

uphold - concept definitions are acyclic (section 2.1). We propose two approaches to

deal with cycles: (i) restrict the set of examples added to KB; (ii) remove the cycles

on a post procedure.

Example 6. Let KB be as presented in Figure 2.2, T L = {CL

GP

, CL

GM

, CL

GF

}.
Executing CDA we have the resulting terminology T :

• GP ⌘ GM tGF

• GF ⌘ GP umale

• GM ⌘ GP u female

(i) If a concept C
j

of the concepts in T L/CL

Ci , i 6= j, already has a definition

and it uses C
i

do not include C
i

or C
j

in KB. This prevents that any new definition

creates a cycle. As a consequence, an order for the learning process may be necessary.

In this case the best acyclic solution is not guaranteed.

(ii) After the end of the learning phase, identify the concepts that incurred in

cycles and relearn them, avoiding the current or a recurring cycle. Choose the

definitions that yield smaller definitions.

The second method have a better chance to return the optimal acyclic solution,

but may relearn several concepts, thus the first method is likely to be more e�cient.

In both methods the best acyclic solutions is not guaranteed.

3.2.1 CDA WITH CYCLE REMOVAL

As stressed earlier on this chapter the normal CDA method has a great proba-

bility of inducing terminologies containing cycles. As one of the possible approaches

to deal with cycles is to remove them after the terminology is obtained, the rest of

this section will present such method.

3The definition for GP makes a cycle.

29

The proposed method will only deal with cycles with depth4 of one, Example 7

displays a terminology with a cycle of depth one. However, the following algorithms

can be modified to work with deeper cycles if a cycle checking is defined and alterna-

tive definitions5 for all concepts in the cycle are found. We left the implementation

of deeper cycle removal for a future work.

Example 7. The terminology containing the concepts: A ⌘ B u C u D and B ⌘
F u D t A, has a cycle with depth of one, because the concept A appears in the

definition of B while it uses B within its definition, needing only one inferential step

before incurring in a cycle.

The Algorithm 4 is the entry point for the learning process. It runs the CDA for

the terminology learning task and call the Algorithm 5 to remove the cycles of the

learned terminology.

Algorithm 4 CDA with Cycle Removal Main algorithm

Require: A terminology learning task T L.
Ensure: A Terminology T E
1: for each CL

Ci 2 T L do
2: Add T L/CL

Ci example sets into KB0

3: Change CL

Ci ’s KB to KB0

4: Learn a description C

i

for CL

Ci

5: end for
6: T E call Algorithm 5(T L)
7: return T E

The Algorithm 5 is used to remove the cycles of a set of concept learning tasks.

It starts by defining an empty map of blocked concepts. A concept C
j

is a blocked

concept for the learning of a concept C
i

, if in a previous iteration there was a cycle

between C

i

and C

j

and C

i

’s definition was altered. Furthermore, it creates a set

of concepts that are in need of cycle verification, beginning with all the concept

learning tasks.

While there are concepts to check for cycles, it chooses two concepts within

this set to verify if there is a cycle involving them. If a cycle exists between two

4Depth is the number of inferential steps taken until a cycle is found.
5The alternative definitions should be constructed in a way to prevent the same recurring cycle.

30

concepts, it creates a new KB using the existing KB together with the set of concepts

not blocked (lines 13, 14). All the dependents of a blocked concept are themselves

blocked concepts. Finally, alternative definitions are learned for both concepts using

their “new”KBs.
Once the alternative definitions are acquired, one must choose which of the two

concepts will receive the alternative definition (line 17). The choice is made in favor

of the alternative definition with the smallest impact on the terminology, i.e., the

one with least di↵erence in length with regards to the original definition. Lastly, the

concept learning task whose definition was altered has to be verified, because new

cycles may have been introduced, and the other concept learning task is added to

alter concept’s blocked set.

Algorithm 5 Remove cycles from learning tasks algorithm

Require: A set of learning task T L with definitions.
Ensure: A Terminology T E
1: mapBlockedConcepts ; {Contains the set of concepts blocked from the learn-

ing of each concept}
2: conceptsToVerify T L

3: while conceptsToVerify 6= ; do
4: C

i

 conceptsToVerify.pop
5: C

j

 null;
6: for each A

p

2 conceptsToV erify do
7: if There is a cycle between C

i

and C

p

then
8: C

j

 C

p

9: break from the for loop
10: end if
11: end for
12: if C

j

6= null then
13: KB

Ci T L/{C
j

[Dependents of C
j

[mapBlockedConcepts of C
i

}
14: KB

Cj T L/{C
i

[Dependents of C
i

[mapBlockedConcepts of C
j

}
15: Learn a description D

i

for C
i

, using any algorithm that learns concepts
in DL with KB

Ci

16: Learn a description D

j

for C
j

, using any algorithm that learns concepts
in DL with KB

Cj

17: C

b

 C

i

or C
j

by the best description between D

i

and D

j

18: add C

b

to conceptsToVerify
19: add the other concept to the blocked concepts of C

b

20: end if
21: end while
22: return T

31

3.3 CONCEPT DEPENDENCY THROUGH TERMINOLOGY

(CDT)

The technique to compact existing definitions proposed in this section is moti-

vated by the fact that if part of the definition has a semantically equivalent but

syntactically smaller counterpart, then a substitution could take place generating a

smaller though equivalent definition. Henceforth we call this process syntactic com-

pression. In the following section, we present our method for syntactic compression.

In (Melo et al., 2014) this approach received the name R2D2 for “Redundancy

Removal on DLs Descriptions”. In the remainder of this work, we will interchange-

ably refer to this method as R2D2 or CDT.

3.3.1 SYNTACTIC COMPRESSION USING TREE

REPRESENTATION

In order to achieve a syntactic compression it is necessary to find viable substi-

tutions, i.e., parts of a concept definition that encompass another concept. Example

8 illustrates a possible syntactic compression.

Example 8. Let A,B,C,DandE be concepts in a DL such that concept A ⌘ C u
D t E and concept B ⌘ D t E. The section D t E within A encompasses concept

B. Therefore, concept A can be rewritten as A ⌘ C uB.

At a first glance, the syntactical compression may be done performing a simple

matching of the two logical definitions. However, this approach is very likely to not

produce all possible substitutions, since most of DL’s constructors are commutable,

as shown in Example 9.

Example 9. The logical definition B uC uD is equivalent with any conjunction of

permutations of the concepts {B,C,D}, such as: (i) B uDuC, (ii) DuB uC, . . .

In order to overcome this limitation, while still performing a syntactic compres-

sion, we propose the use of a n-tree representation of the concepts definitions. In

this tree: (i) internal nodes represent a constructor, (ii) leaves represent concepts,

32

Figure 3.3: Example 10’s syntactic tree representation.

and (iii) all children of a constructor node are commutable. Allowing the commuta-

tion of the constructor’s node children is essential, since identical definitions, unless

for the order of literals, should have the same associated tree. This is illustrated in

Example 10.

Example 10. Let A,B,C,D,E concepts in a terminology, such that concept A ⌘
C uDuE and B ⌘ E uC uD. Fig. 3.3 shows the representation for both concepts.:

Fig. 3.4 shows all the correlations between ALC’s constructors and their tree

representation. We stress that the proposed method is language independent as

long as it is possible to separate the constructors of the DL language between unary

and binary (commutable n-ary) constructors.

3.3.2 REDUNDANCY REMOVAL ON DLS DESCRIPTIONS (R2D2)

Algorithm 6 presents our procedure to execute the syntactic compression of a

terminology.

The algorithm receives as input a set of concepts descriptions (terminology), and

a set of available constructors, divided into unary and n-ary, and returns a set of

compressed concept descriptions.

It starts by sorting the set of concepts in ascending order of length (Definition 3).

This is an important step, because a concept can only have a substitution involving

a smaller concept.

Next, for each concept in the terminology it finds its corresponding tree form

(line 4). This step is better visualized through Algorithms 7 and 8, that we discuss

later. Once it has the tree representation of all concepts, it can proceed to find

33

Figure 3.4: The syntactical tree representation of ALC’s constructors.

suitable substitutions. It does so by exhausting all the pairs of concepts with a

smaller concept and a larger one (line 6), and calling Algorithm 9 (line 7) to find a

proper substitution. After all the substitutions are made, it changes the modified

original concept definitions by translating the tree representation back to its logical

form (line 10). The translation method is done via a pre-order traversal in the tree.

SYNTACTIC TREE CONSTRUCTION

Algorithms 7 and 8 are used to parse the logical syntax into the tree representa-

tion. In case all the n-ary constructors have the same precedence, as it is the case

of ALC language, we still need a way to distinguish them in the tree. We do so by

creating a hierarchy in the tree with them. Thus, the line 22 of algorithm 7 creates

a subtree as soon as it identifies a constructor di↵erent from the previous one. In

case the DL language defines a di↵erent precedence rule than ALC, the algorithm

must be changed to attend such a rule.

In the syntactic representation, a block is a part of the definition enclosed within

parenthesis, a block may contain other blocks. The upper and lower bound are,

34

Algorithm 6 Syntactical Compression Main Algorithm

Require: a set of concept definitions C

d

= {C
1

, . . . , C

n

} and the set of valid con-
structors in the DL

Ensure: a set of compressed concepts definitions C 0
d

= {C 0
1

, . . . , C

0
n

}
1: sort C

d

by concept definition length;
2: T

c

 {}
3: for each C

i

2 C

d

do
4: T

c

.add Algorithm 7(C
i

, 0, C
i

length, valid unary constructors, valid nary
constructors);

5: end for
6: for each pair T

c

i

and T
c

j

in T
c

, where i < j do
7: Algorithm 9(T

c

i

, T
c

j

);
8: end for
9: for each T

c

i

2 T
c

do
10: C

i

 TreeToDefinition(T
c

i

);
11: end for
12: return C

d

respectively the begin and end of a concept or block.

FINDING PROPER SUBSTITUTIONS

Algorithm 9 is used to perform substitutions between two trees. It receives two

trees: a larger tree and a smaller tree. To perform a substitution, it must find a

node within the larger tree that is the root of the smaller tree (line 4). In this

representation, a larger tree contains a subtree equivalent to a smaller tree when

when: i) all the internal nodes in the smaller tree have an equivalent node in the

larger tree subtree (also with equivalent arcs), and ii) the subtree root of the larger

tree contains all the nodes below the smaller tree root. Example 11 shows why the

second restriction does not state that the larger tree subtree’s root should be equal

to the smaller tree’s root. The problem of finding an equivalent tree is also known

in the literature as tree isomorphism (Zemlyachenko et al., 1985).

Example 11. Let F ⌘ A t B u C and E ⌘ A t B. Executing the substitution on

the tree representation of F and E we have:

35

Algorithm 7 Logical Description to Syntactical Tree

Require: a concept description C; a lower bound; an upper bound; a set of
unary constructors S

u

= U

C

1, . . . , U
C

n and a set of nary constructors S

n

=
N

C

1, . . . , N
C

n

Ensure: A syntactical Tree root

1: create an empty root;
2: create the auxiliary variable firstConcept;
3: index lowerBound;
4: while index upperBound do
5: currentConstruct C[index];
6: if currentConstruct is a block then
7: aux Algorithm 7(C, index, end block index, S

u

, S
n

);
8: if root is empty then
9: root result;
10: else
11: merge root with result;
12: end if
13: increment index;
14: continue to next loop iteration;
15: end if
16: if currentConstruct 2 S

n

then
17: if root is empty then
18: root currentConstruct;
19: if firstConcept is not empty then
20: add firstConcept as a child of currentConstruct;
21: end if
22: if root 6= currentConstruct then
23: add root as a child of currentConstruct;
24: root currentConstruct;
25: end if
26: end if
27: increment index;
28: continue to next loop iteration;
29: end if
30: if currentConstruct 2 S

u

then
31: currentConstruct Algorithm 8;
32: index end index returned in line 31;
33: end if
34: if root is empty then
35: firstConcept currentConstruct;
36: else
37: add currentConstruct as a child of root;
38: end if
39: end while
40: if root is empty AND firstConcept is not empty then
41: root firstConcept;
42: end if
43: return root

36

Algorithm 8 Recursive Method for Unary Constructors

Require: a concept description C; a lower bound; a set of unary constructors S
u

=
U

C

1, . . . , U
C

n and a set of nary constructors S
n

= N

C

1, . . . , N
C

n

Ensure: A syntactical Tree node and the ending index

1: index lowerbound;
2: currentConstruct C[index];
3: if currentConstruct 2 S

u

then
4: if currentConstruct is a unary quantifiers then
5: currentConstruct all items from index to relation statement;
6: end if
7: currentConstruct.descendent Algorithm 8;
8: index Algorithm 8 index;
9: else
10: if currentConstruct is a block then
11: currentConstruct Algorithm 7(C, index, end block index, S

u

, S
n

);
12: index end block’s index;
13: end if
14: end if
15: return currentConstruct and index

Algorithm 9 Syntactical Compression’s Substitution

Require: larger tree T
l

; smaller tree T
s

1: nodesToV erify {T
l

.root};
2: while nodesToV erify is not empty do
3: rootLarger nodesToV erify.pop;
4: if rootLarger ⌘ T

s

.root then
5: rootLarger T

s

concept;
6: end if
7: add rootLarger in nodesToV erify;
8: end while

37

Table 3.2: Comparison matrix for solutions: CDE, CDA and CDT.

TBox Abox Language Order Preferred Processing Generates

Dependent Dependent Independent Constructor Cycles

CDE No Yes Yes No u Sequential No

CDA No Yes Yes No None Parallel Yes

CDA1 No Yes Yes Yes None Sequential No

CDA2 No Yes Yes No None Sequential No

CDT Yes No Yes No None Sequential No

3.4 SUMMARY OF METHODS

In this section we describe some of the aspects of each of the proposed methods

for Multiple Concept Learning. Table 3.2 list the properties compared for each of

the methods. In this table the CDA method is divided into tree configurations:

• CDA: Regular CDA solution;

• CDA1: CDA with cycle avoidance;

• CDA2: CDA with cycle removal;

The first and second columns of Table 3.2, shows which methods are TBox and

ABox dependent, respectively. CDT is the only method that requires a pre-existing

terminology. This terminology can be defined manually or be the product of a

terminology learning task. On the same token, CDT is independent of ABox, while

all the other solutions are dependent on an existing ABox. This is the case because

all the solutions, excepting CDT, are tightly related to the terminology learning

task, for this reason CDT can be used outside the context or a terminology learning

task.

38

The reliance of CDE and CDA solutions on the set of examples to induce termi-

nologies with dependencies leads to

Because of CDE and CDA reliance on the set of examples and the shared indi-

viduals within these sets to induce terminologies with dependencies, both methods,

and their variants, are improved with a premise related to the completeness of the

examples. Usually, there are no rules related to how one chooses the set of examples

for the learning task, it only needs to contain relevant individuals for the concept

being learning, there are no indications of how significant this sample of the domain

should be.

For CDE and CDA, even when assuming the background knowledge (KB) is

shared by the concept learning tasks in a terminology learning task, there is no

guarantee that the same set of individuals will be used as examples for all concept

learning tasks. If this is the case, CDE and CDA methods would fail at finding

relationships because they use a comparative analysis of the shared individuals to

inform the dependencies found.

Therefore, to improve the quality of the dependencies found, we may add the

following conditions: i) all concept learning tasks in a terminology learning task

must relate to the same knowledge base; ii) all concept learning task examples must

relate to the same set of individuals. In this case, all the individuals belonging to

a subset of KB should be classified as either a positive or negative example6. This

burden may be too big for the domain experts.

All the solutions are not dependent on a particular DL language (Column 3).

This means that all the solutions can be used with any DL language available without

any additional configuration. However, this does not means that the solutions will

have the same performance in all the possible languages, in these cases the heuristics

could be tweak to better suit the chosen language. In this master dissertation we

used DL-Learner as the learning component of our solutions. DL-Leaner’s default

language is ALCN .

6See Appendix A for a further reading about the relationship of OWA and CWA to inductive
and inferential reasoning.

39

The fourth column, labeled“Order”, indicates if the terminologies found using the

solution are a↵ected by the order in which the concept learning tasks are inputted.

CDA1 is the only solution directly a↵ected by the concept learning task ordering.

The order a↵ects CDA1 because it is used to avoid the formation of cycles. One

important thing to notice, it that CDE is not a↵ect by the inputted order, although

its main goal is to establish a learning order. CDE is not a↵ected because it creates

its orders based on the concept learning tasks set of examples.

The fifth column, displays the preferred constructor of each solution. CDE is the

only solution with a preferred constructor. As discussed in its section, the heuristic

use to construct the taxonomy of concepts and the way it is traversed to extract the

learning order, implies a predilection for expressing the dependencies among concept

with conjunctions (u). This happens because the order assumes that a concept with

a smaller set of examples can be properly defined using the larger in conjunction

with other description (C).

The sixth column, labeled “Processing”, displays the manner that the concept

learning tasks within a terminology learning task can be executed, or in CDTs

case how the concept descriptions are managed. The concept learning tasks can

be processed either sequentially or in parallel. CDE, CDA1, CDA2 and CDT are

processed sequentially, while CDA can be executed in parallel.

The sixth column is directly related to the seventh column. The seventh column,

displays which of the approaches can produce terminology containing cycles. This

is particularly important because one of the most commonly upheld assumptions in

DL’s is that terminologies are acyclic, however this is not always the case. All the

solutions, with exception of CDA, do not generate cycles.

CDA’s goal of finding the shortest description and the used of assertions as

surrogates for definitions, it can yield the shortest terminologies, although this leads

to cycles. But because of the prevalence of the acyclic assumption we developed

two alternative version of CDA: CDA1 - avoiding the cycles and CDA2 - removing

the cycles. The second solution (CDA2) has a better chance to return the optimal

40

acyclic solution, but may relearn several concepts, thus the first method (CDA1)

is likely to be more e�cient. In both methods the best acyclic solutions is not

guaranteed.

4 EXPERIMENTS

To validate the hypothesis and the proposed solutions we used the experimental

method. This chapter presents the experimental methodology and it is divided

in three sections. The first one describes the set of datasets used throughout the

experiments. The second section describes the experiments pertaining each proposed

method (CDE, CDA and CDT). The third and last section describes the experiments

to compare all the proposed methods and single concept learning.

4.1 DATASETS

The following are the problems used in the experiments.

• Kinship: defines family relations through a very simple terminology, contain-

ing only three roles (sibling, married and parent) and two atomic concepts

(male and female). The set of concepts used for learning was {Grand Par-

ent (GP), Grand Father (GF), Grand Mother (GM)}, obeying their regular

semantic. Each concept in this set is interdependent of the others, i.e., one

could generate a proper concept definition using a combination of the remain-

ing ones, e.g., GM ⌘ GP AND female, or GM ⌘ GP AND NOT GF.

• Moral Reasoner(Wogulis, 1994): this dataset describes moral statements

such as “Someone is guilty of an action if it is blameworthy or he/she takes the

blame for someone else”. It has a large terminology composed of 25 primitive

concepts and 20 non-primitive concepts. Additionally, the ABox has asser-

tions for 202 individuals. However, not all the assertions about non-primitive

42

concepts are represented, in these cases it is necessary to make inferences to

discover them. Since this is a more elaborate dataset than the Kinship, it can

lead us to interesting conclusions about the proposed methods. Towards that,

two experiments were done with this dataset. In the first one (Exp1), the

concepts chosen to be learned were {guilty, blameworthy, responsible, notac-

cident}, and in the second one (Exp2) {guilty, blameworthy, responsible, no-

taccident, weak intend, intend c}, increasing the learning process complexity

with two more concepts. The concepts for each set of problems were arbitrar-

ily chosen because of their interdependencies, however other sets of concepts

could have been used.

• OAEI campaign: CDT’s method can deal with terminologies that do not

have individuals (ABox) because it works only with concept’s descriptions

(TBox). Because of this we could devise a di↵erent more broader set of prob-

lems to validate CDT’s approach. We devised a validation experiment using

a larger set of problems, containing a number of datasets of OAEI1’s 2013

campaign of ontology matching and all datasets packaged as examples on DL-

Learner system2. In total, there were 46 datasets with a wide range of domains,

for example the kinship, moral, biomedical, and sizes, ranging from 0 to 10480

complex concepts.

4.2 EXPERIMENTS FOR EACH INDIVIDUAL METHOD

4.2.1 CDE: FINDING THE BEST THRESHOLD VALUE

CDE is a method that creates an order over the concepts that a multiple con-

cepts learning algorithm should follow. It uses a threshold parameter that defines

a lower limit for the proportion of intersection between two concepts, after which

the concepts are considered dependent by the method. In (Melo et al., 2013b) the

threshold value was arbitrarily set to 80%. Here, we would like to empirically decide

1http://oaei.ontologymatching.org/
2http://dl-learner.org/Projects/DLLearner

43

which is the best value for the threshold parameter.

The issue that arises here is what“best”means in this context. The CDE method

analyses the concept’s set of positive examples two by two and check whether the

proportion of shared examples over the amount of examples within each set is higher

than the threshold. This information is then used to build the taxonomy, which in

turn is used to define the learning order. Thus, the best threshold value would be

the one in which the taxonomy found by CDE is identical to a taxonomy built from

the relationships found on the learned terminology, i.e., the relationships predicted

by the induced taxonomy should also appear in the learned terminology.

Thus, to analyse the behaviour of CDE approach according to the threshold

parameter, we set it to 20%, 40%, 60%, 80% and 90% and computed the match-

ing relationships using the moral reasoner dataset. Table 4.1 presents the average

predictive results we found, the second column presents the threshold’s value, the

values were aggregated if more than one result were the same, where the third col-

umn shows the number of predictions returned by the induced taxonomy, the fourth

column shows the subset size of relationships that were indeed considered in the

learned terminology and the fifth column shows the number of found dependencies

that matched those presented in the target description, we called this metric Hits.

The results indicate that indeed the arbitrarily set threshold is a good value, fol-

lowed closely by 90%. As it should be expected, requiring only a low intersection

between two sets of examples yields a high number of predictions that are not ac-

tually established during the learning phase. An interesting phenomenon ocurred

in the problem “exp2” with thresholds of 80% and 90%, in these scenarios relation-

ships di↵erent from those of the target concepts were found, this indicates that the

terminology learning task choosen has a wide variety of possible relationships with

valid descriptions.

4.2.2 CDA

CDA adds the learning examples to the background knowledge in order to induce

the shortest solution for a single concept learning task (Definition 7). We devised

44

Table 4.1: CDE: Best Threshold Experiment.

Exp. Threshold # Pred. # Relations # Hits Hits over
Found Pred.

exp1
(0.8, 0.6, 0.4, 0.2, 0.1) 6 4 4 0.67
0.9 3 2 2 0.67

exp2

(0.4, 0.2, 0.1) 15 4 4 0.27
0.6 13 4 4 0.31
0.8 9 4 3 0.33
0.9 4 5 2 0.5

Table 4.2: CDA’s validation experiment results.

Experiment Concept Definition Length

CL

GP EXISTS parent.EXISTS parent.TOP. 5

GF (male AND EXISTS parent.EXISTS parent.TOP). 7

GM (female AND EXISTS parent.EXISTS parent.TOP). 7

CDA

GP (grandfather OR grandmother). 3

GF (grandparent AND male). 3

GM (grandparent AND female). 3

an experiment using the kinship toy example in order to validate this claim. In

this experiment we will not uphold the assumption that the terminology must be

acyclic, we did this because we would like to know if CDA’s surrogates are indeed

correct and can yield the shortest description for all the concepts in a terminology

learning task. Table 4.2 shows the result for this experiment contrasting with the

result achieved with the CL method.

CDA achieves a terminology with the length 9, while CL found a terminology

with the length of 19. Furthermore, CDA found the shortest possible solution for

all three concepts in the terminology learning task.

4.2.3 CDT

Di↵erent from the CDE and CDA, CDT (R2D2) can be used outside the termi-

nology learning problem, because it is a method for theory restructuring.

In order to evaluate we used the R2D2 validation dataset described earlier. Ta-

ble 4.3 presents the results obtained from R2D2 for each one of the 46 datasets. Most

of the datasets have terminologies with only atomic concepts and roles (ABox), in

theses cases the method does not propose any replacements on the original terminol-

ogy since there is nothing to compress. In most of the other cases the method had no

45

Table 4.3: CDT: Results of the validation experiment.

Dataset #Concepts Original Size Post Size Exec Time in secs.

DL|Arch 5 18 18 .018273

DL|Family-Father 1 2 2 .001455

DL|Family-Uncle 1 3 3 .004273

DL|Forte-Family 1 3 3 .001455

DL|MoralReasoner 20 133 133 .032727

DL|MoralReasoner(43) 19 130 130 .034091

DL|MoralReasoner(43 Complex) 17 112 112 .025364

OAEI|conf cmt 1 5 5 .001364

OAEI|conf Cocus 5 19 17 .005727

OAEI|conf Conference 13 49 49 .024364

OAEI|conf confious 8 24 24 .011273

OAEI|conf edas 7 42 42 .011091

OAEI|conf PCS 4 12 12 0

OAEI|conf sigkdd 7 21 21 .01

OAEI|NCI small overlapping fma 1964 17046 17046 55.59373

OAEI|SNOMED small overlapping fma 2882 35552 35552 86.63409

OAEI|NCI small overlapping snomed 6851 74191 74183 684.26991

OAEI|NCI while ontology 10280 151316 151308 1997.30955

Rest of datasets (#28) 0 0 0 0

impact on the size of the terminology. With further analysis this happened because

the terminologies were already syntactically compressed, then the terminology after

the method has the same length as earlier. More than anything, this might be a

testament of the quality of the terminologies.

The method achieved syntactic compression on only three of the forty-six termi-

nologies:

• conf Cocus;

• NCI small overlapping fma.owl;

• NCI whole ontology.owl.

Next we will analyse each substitution.

conf Cocus : the original terminology was composed of five complex concepts

(Administrator, Document, Event, Event Setup and User), with “Document” and

“Event” having the same definition: “9created by.Person”. The method arbitrarily

46

substituted one of the definitions by the other concept, as an example resulting

in: Event ⌘ Document. In this particular case, it might be argued that the real

meaning is lost when this substitution is performed, but from a pure logical point

of view the semantic is maintained.

NCI small overlapping fma.owl and NCI whole ontology.owl : both terminolo-

gies pertain to the same domain of biomedicine, sharing much of the concepts and

definitions. Looking closely we can see that the terminology NCI whole ontology.owl

contains NCI small overlapping fma.owl Both had the same two substitutions: the

concept “Complement Component-4” was substituted by its definition on concepts

“Complement Component-3”and“Complement Component-5”. Both concepts where

the substitution occurred had a structure of many conjunctions of existential restric-

tions. These particular replacements are di�cult to visualize because of the size of

the concepts (41 and 57 respectively). This might suggest a direct relationship

between a terminology size and complexity and how di�cult it is to find all simplifi-

cations. For humans there seems to be a limit over which a terminology or concept

is too complex to one entertain all possible substitutions. These experiments sug-

gests that the use of R2D2 has the potential to yield terminologies as simple as

syntactically possible, provided that the computational cost is not too high.

R2D2 COMPUTATIONAL BEHAVIOUR

In this section we try to establish the relationship between the execution time of

the R2D2 and the amount of concepts and size of a terminology.

To evaluate this we ran the evaluation experiment ten times and calculated the

average execution time for each terminology. Fig. 4.1 shows the relationship between

the number of concepts/size of terminology and the execution time.

It is important to stress that, although it seems that there would be an expo-

nential increase in the execution time as terminologies gets larger than the biggest

tested, is highly unlikely that terminologies would have much more than 10280 con-

cepts and 151316 in size. Having the 10280/151316 as a soft limit for the complexity,

the 20 to 30 minutes of execution time seems reasonable.

47

Figure 4.1: R2D2’s Execution time vs Number of concepts and Terminology size.

4.3 EXPERIMENTS COMPARING METHODS

In this section, we describe experiments conducted towards comparing CDE,

CDA and CDT. The experimental design consisted of the following steps:

1. select a problem that has an associated terminology with interdependent con-

cepts;

2. select a set of concepts within the terminology to compose the concept learning

tasks (CL

C

i

);

3. define the knowledge base (KB) and the sets of examples (E
p

i

, E
n

i

) for all

CL

C

i

. The latter is performed either directly from the original examples or

by performing inference along the terminology and the knowledge base. While

the KB is the same in all CL

C

i

, E
p

i

and E
n

i

vary according to the concept;

4. run CDE, CDA, CDT and DL-Learner as a standard single concept learning

approach for baseline comparison.

5. analyze the results achieved.

Towards encompassing the first step, we used the datasets Kinship and Moral

Reasoner.

Each dataset was used to evaluate CDE, CDA and CDT from di↵erent perspec-

tives. Therefore, a particular experimental methodology was used for each one, as

described in the following section.

48

4.3.1 EXPERIMENTAL METHODOLOGY

With both datasets the description learning component chosen to learn the con-

cepts was the DL-Learner system with default settings, since it is a largely used

environment to learn DLs.

KINSHIP DATASET

Regarding this dataset, we want to investigate three issues: (i) whether the

learned descriptions are according to the general semantics of the kinship domain;

(ii) which approach yields the more readable and compact terminology; and (iii)

whether the ordering of concepts defined beforehand makes some di↵erence for the

terminology learning task. Thus, we run and compare DL-Learner, as the approach

for single concept learning, CDT, CDE and CDA. The latter considering three cases:

(1) and (2) based on the definition of T L and avoiding cycles:(1) the order estab-

lished by CDE’s taxonomy, in this case < GP, GF, GM > and (2) the reversed order

of the one considered in (1) (< GM, GF, GP >); (3) removing cycles.

MORAL REASONER

Concerning this dataset we want to investigate the following issues:

i) how the completeness of the examples over the original set of individuals in-

fluences the proposed approaches? Towards answering this question we vary

the training set considering 20%, 40%, 60%, 80% and 100% of examples.

ii) what is the quality of the terminology learned by CDE, CDA and CDT, includ-

ing a comparison with DL-Learner? We investigate this issue using quantita-

tive and qualitative measures. For the former we considered f-measure while

for the latter (1) the size, encompassing concepts, relations and constructors,

and (2) the similarity to the original terminology. This last one we accom-

plished by subsumption relation: (a) does the learned terminology subsumes

the original one (more general)? (2) does the original terminology subsumes

the learned one (more specific)? If both questions are true, then the learned

and original terminology are equivalent (this would be the best result possible).

49

Table 4.4: Toy Example results: Concepts Definitions and their sizes found with the
methods CDE, CDA, CDT and DL-Learner (DL-L).

Approach Concept Definition Size

DL-Learner

GP EXISTS parent.EXISTS parent.TOP. 5

GF (male AND EXISTS parent.EXISTS parent.TOP). 7

GM (female AND EXISTS parent.EXISTS parent.TOP). 7

CDE

GP EXISTS parent.EXISTS parent.TOP. 5

GF (grandparent AND male). 3

GM (grandparent AND female). 3

CDA(1)

GP (grandfather OR grandmother). 3

GF (male AND EXISTS married.grandmother). 5

GM (female AND EXISTS parent.EXISTS parent.TOP). 7

CDA(2)

GP EXISTS parent.EXISTS parent.TOP. 5

GF (grandparent AND male). 3

GM (grandparent AND female). 3

CDA(3)

GP EXISTS parent.EXISTS parent.TOP. 5

GF (grandparent AND male). 3

GM (grandparent AND female). 3

CDT

GP EXISTS parent.EXISTS parent.TOP. 5

GF (grandparent AND male). 3

GM (grandparent AND female). 3

For this dataset 10-fold cross-validation was used.

4.3.2 EXPERIMENTAL RESULTS

In this section, the results obtained with the experiments are described.

KINSHIP DATASET

The results obtained considering the Kinship dataset is depicted in Table 4.4.

From that, it is possible to perceive that all concepts description follow the

correspondent semantics. Moreover, CDE, CDA and CDT were able to learn a

more compact and readable terminology than DL-Learner. Additionally, in order

to uphold DL’s assumption of acyclic terminologies we used: a version of CDA that

avoids cycles ((1) and (2)), in this case orderings are particularly important, i.e.,

di↵erent orders entails di↵erent results; and a version of CDA that removes the

cycles (3) (alg. 4 and 5). The results in Table 4.4 supports such conclusion and

depicted that CDA avoiding cycles could achieve the same terminology as CDE and

CDT by reversing its learning order.

50

MORAL REASONER DATASET

In the rest of this chapter we will refer to CDA avoiding cycles as CDA

1

or

CDA1, and to CDA removing cycles as CDA

2

or CDA2.

Table 4.5 exhibits the results for all the proposed approaches (CDE, CDA1,

CDA2 and CDT), considering the two experiments (Exp1 and Exp2) described in

Section 4.3.1 and the di↵erent percentage of training examples. The proportion

of positive and negative examples was maintained in each set. Regarding CDE,

we present the results for 3 di↵erent values of the threshold parameter (0.6, 0.8,

0.9). Moreover, to evaluate the approaches, we considered the percentage of original

dependency among concepts found in the learned terminology (% Hits) and Table

4.5 depicts the average of the 10 folds.

Observing the results in Table 4.5, both CDE and CDA performed worse than

expected. The CDA (1 and 2) behavior could be explained by it being even more

sensitive to completeness than we expected, this might be the case since we direct

10% of the original examples for the evaluation fold in every scenario (so the real

percentages of the original dataset are: 90%, 72%, 54%, 36% and 18%). To confirm

this insight we executed the same scenarios in the whole original dataset (without

cross validation).

Table 4.6 validated our solutions, showing that with the whole set of individuals

CDA1 was able to find all“hits”for Exp1. Furthermore, being the only approach able

to achieve this. Moreover, the results for Exp2 was also improved. For Exp1 CDA2

has a comparable result to the other approaches, but it is a lot better on Exp2, this

might indicate that CDA2 behaves better on more complex terminology learning

problems. The results for CDE did not change as much as when the completeness

was relaxed. Therefore, when all the individuals are known or when the examples

are a more significant sample of the domain CDAs are the better choice. CDT’s

approach found far less dependencies than its counterparts, Table 4.7 shows the

CDT’s hits.

For the analysis of the terminology quality, DL-Learner was also considered.

51

Table 4.5: Aggregate Results of Relaxing Completeness Experiment for the methods
CDE, CDA and CDT.

Approach Experiment Percentage % Hits

CDE|0.9

exp1
100% 33%
(80%, 60%, 40%, 20%) 0%

exp2

100% 60%
80% 80%
60% 60%
40% 40%
20% 20%

CDE|0.8

exp1
100% 66%
(80%, 60%, 40%, 20%) 0%

exp2

100% 20%
80% 80%
60% 60%
40% 40%
20% 20%

CDE|0.6

exp1
100% 66%
80% 66%
(60%, 40%, 20%) 0%

exp2

100% 20%
80% 20%
60% 60%
40% 40%
20% 20%

CDA

1

exp1
100% 33%
(80%, 60%, 40%, 20%) 0%

exp2
(100%, 80%) 20%
60% 0%
(40%, 20%) 0%

CDA

2

exp1
100% 33%
(80%, 60%, 40%, 20%) 0%

exp2
(100%, 80%) 20%
60% 0%
(40%, 20%) 0%

CDT
exp1 (100%, 80%, 60%, 40%, 20%) 0%
exp2 (100%, 80%, 60%, 40%, 20%) 0%

52

Table 4.6: Full Completeness over the individuals Experiment with the methods
CDE, CDA and CDT.

Approach Experiment # Dependencies % Hits

CDE(0.9, 0.8)
exp1 4 66%
exp2 4 20%

CDE|(0.6) exp1 4 66%
exp2 5 20%

CDA

1

exp1 3 100%
exp2 6 40%

CDA

2

exp1 4 66%
exp2 5 80%

CDT
exp1 0 0%
exp2 0 0%

Table 4.7: Full Completeness Experiment CDT’s Hits.

Coverage Total 20% 40% 60% 80% 100%

Fold
Exp Exp Exp Exp Exp Exp
1 2 1 2 1 2 1 2 1 2 1 2

- 0 0
1 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0 0
3 0 1 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0 0 0
5 0 0 0 0 0 0 1 0 0 0
6 0 0 0 0 0 0 0 0 0 0
7 0 0 0 0 0 0 0 0 0 0
8 0 2 1 0 0 0 1 1 0 0
9 0 0 0 0 0 0 0 0 0 0
10 0 0 0 0 0 0 1 0 0 0

53

Figure 4.2: F-measure for Exp1 considering scenarios with CDE, CDA, CDT and
DL-Learner (DL-L).

Fig. 4.2 and Fig. 4.3 plots the f-measure results for each of the concepts and for

all scenarios. It is possible to notice that all approaches performed statistically

similar in both Exp1 and Exp2, except CDA in Exp2, when inducing the definition

of weak intend. However, it is important to notice that in this specific case, the

appropriate relationships was not considered (see Table 4.5), possibly because the

lack of full completeness due to the 10% of examples reserved for validation, as

discussed previously. Therefore, terminology learned with multiple concept learning

approaches achieve similar predictive results compared to the single concept learning

approach. This partially validates this research hypothesis: terminologies learned

regarding dependencies among the concepts being learned have comparable quality

(predictive power) to its counterpart learned with no regard for the dependencies.

Regarding the qualitative metrics, we used the whole set of examples. For the

size of the found terminologies Fig. 4.4, on the far left we have the original size

of the terminology, none of the approaches were equal or smaller than it. On the

far right, we have the size for the terminologies without multiple concept learning,

none of the approaches produced terminologies larger than it. CDT’s results were

54

Figure 4.3: F-measure for Exp2 considering scenarios with CDE, CDA, CDT and
DL-Learner (DL-L).

equal to DL-Learner’s because no redundancy was found. Apart from CDT, all the

proposed methods induced far smaller terminologies than the equivalent concept

learning without addressing the dependencies. This result partially validates this

research hypothesis: if dependencies among the concept of the domain that need

to be learned are found then clearer and compact terminologies are yield. In con-

junction with the results related to the predictive power, this validates the research

hypothesis: “ if dependencies among the concept of the domain that need to be

learned are found then clearer and compact terminologies are yield wile their quality

is maintained”.

For the size of concept per experiment see Fig. 4.5 and Fig. 4.6, the three CDE

had very similar results, being consistently better or equivalent to DL-Learner, ex-

cept on “responsible” in Exp1 and “notaccident” in Exp2. CDA

1

had the best result

for “guilty” in Exp1, but its “blameworthy” was the worst among our approaches,

exp. Interestingly, both CDA found by far the best result for “blameworthy” and

“intend c” in Exp2, with CDA

2

being even better, while being average in the other

results. There is a trade-o↵ on the size of the concepts, in some instances choosing

55

Figure 4.4: Size of found terminology for Exp1 and Exp2 with methods CDE, CDA,
CDT and DL-Learner (DL-L).

a smaller definition for a concept a↵ects the size of other related concepts, because

the latter might not be able to use the former. This explains why CDA

2

had the

best solutions overall, because di↵erent from the other approaches it tries alternative

definitions for both concepts when a dependency incurs in a cycle.

Fig. 4.7 and Fig. 4.8 contrasts the size of concepts learned with their original

definitions. The values are calculated through the formula |originaldefinition|
|learneddefinition| �1, where

values over 0 indicates that learned terminology is smaller than the original one.

Most of the results were negative, with the size being between 40 to 70% bigger,

while some results are positively better as “blameworthy” in Exp1 and “responsible”

and “weak intend” in Exp2, with definitions 200% smaller than the original ones.

Additionally, a particularly important result is the performance of CDA concerning

concept “blameworthy” in Exp2. It provides the higher decrease in size. Due to the

fact that CDA uses assertions about all concepts being learned and “blameworthy”

is the concept that is most dependent on other concepts from the learning task, it

is the one that most benefits from CDA approach. On the other hand, CDE is the

worst choice for this concept, since the taxonomy is more complex.

56

Figure 4.5: Size of concepts definitions for Exp1 with methods CDE, CDA, CDT
and DL-Learner (DL-L).

Figure 4.6: Size of concepts definitions for Exp2 with methods CDE, CDA, CDT
and DL-Learner (DL-L).

57

Figure 4.7: Size di↵erence for Exp1 w.r.t. Original Definition with methods CDE,
CDA, CDT and DL-Learner (DL-L).

Figure 4.8: Size di↵erence for Exp2 w.r.t. Original Definition with methods CDE,
CDA, CDT and DL-Learner (DL-L).

58

Figure 4.9: Size di↵erence for Exp1 w.r.t. DL-Learner (DL-L) with methods CDE,
CDA and CDT.

Fig. 4.9 and Fig. 4.10 uses the same formula, showing that CDEs and CDAs

provide smaller definition than DL-Learner.

Furthermore, for Exp1 all the definitions learned subsumed the original defini-

tions, while for Exp2 (i) definition for concepts {blameworthy, guilty, responsible}
subsumes their original definition when DL-Learner and CDA are performed; (ii) def-

inition for concepts {guilty, intend c, weak intend} subsumes their original definition

when CDE is performed; (iii) the original definition for {notaccident} subsumes the

definition learned with DL-Learner and (iv) the original definition for {notaccident,
responsible} subsumes the learned definition when running CDA and CDE.

Summarizing, these results show the potential of the multiple concept learning

approaches proposed in this work, to find smaller more readable solutions and, in

some cases, solutions equivalent to those created by human beings, validating this

research hypothesis. Furthermore, CDE proved to be less susceptible to the com-

pleteness assumption while CDA was very sensible to it. CDA

2

displayed a very

good performance, being the closest to the original terminology on the more complex

experiment (Exp2), however, one must not forget the additional cost of relearning

the concepts to remove the cycles. Finally, CDT’s approach found far less depen-

dencies than its counterparts. This is due to the fact that syntactical substitutions

59

Figure 4.10: Size di↵erence for Exp2 w.r.t. DL-Learner (DL-L) with methods CDE,
CDA and CDT.

are far more unlikely when the set of concept learning problems have a wide range of

possible solutions. This happens because the learner selects for short descriptions.

5 RELATED WORK

There are two distinct sets of related work, one regarding to the terminology

learning problem (related to all three methods) and a set of related work particular

to R2D2’s use in theory restructuring.

5.1 TERMINOLOGY LEARNING

To the best of our knowledge, the literature related to terminology learning

considering the induction of a set of related, but distinct concepts, is rather scarce.

One seemingly related work is presented in (Distel, 2011), where relations among

the concepts is discovered and represented through inclusion axioms (expressing a

subsumption relation). Thus it is related to CDE, where the relation among concepts

is represented through a taxonomy. However, Distel (2011) shares a goal with Baader

et al. (2007) of finding the complete knowledge base for a DL, while we wish to deal

only with a defined set of concepts.

Additionally, we can consider other works as related to ours assuming two per-

spectives: (i) single concept learning in DL, as such methods are used to learn the

concepts definitions in all of the present methods and (ii) multiple predicates learn-

ing in ILP (Muggleton, 1991, 1992), as most of the theoretical background is shared

between learning in DL and learning in ILP, and some interesting and useful ideas

are bound to be shared between the two areas.

For the first case, the related works are DL-Learner (Lehmann and Hitzler, 2010),

DL-FOIL (Fanizzi et al., 2008) or Yin-Yang (Iannone et al., 2007). As discussed in

61

Section 3, the main di↵erence between them and our proposals is that the related

work learn the terminology without looking into the relations existing among the

concepts. Moreover, in Section 4, experiments showed that the proposed methods

provide a smaller terminology compared to an approach of single concept learning.

In the second case, the most prominent related work is the one proposed in

(De Raedt et al., 1993), where the problem of multiple predicate learning was de-

fined as not limited to the generation of several independent predicate definitions

but, rather involving the discovery of predicates dependencies. Although, this defi-

nition is very similar to the one defined in this master dissertation for our multiple

concept learning approaches, specific implementations are required due to particular

idiosyncrasies that emerge from the particular knowledge representation - descrip-

tions logics and logic programming, in concept learning in DL and predicate (or

concept) learning in ILP, respectively. Besides the particularities of the languages,

the main di↵erence between the approaches is that, while in (De Raedt et al., 1993)

a set of predicates is learned in a interleaving way, with maybe more than one

definition for each predicate, this cannot be done in DL according to the upheld

assumptions (“there is only one definition for a concept name”).

In (Malerba et al., 1997) a definition for the problem of Multiple Concept Learn-

ing is defined, a solution using statistical functions to devise the dependency level

on attribute-based domains and, finally, an ad-hoc method is proposed for multiple

concept learning in FOL. The motivation and definition for the Multiple Concept

Learning problem removing the independence assumption are very similar to the

ones used in this work. The proposed method for Multiple Concept Learning on

attribute-based domains are almost identical to CDE’s solution. It creates a graph

(taxonomy) that models the dependencies among the concepts and a learning order

is inferred from it, the dependencies are found using statistical methods such as �2,

but the idea that examples are the guides to the definitions is shared between CDE’s

and the method used in (Malerba et al., 1997). However, the authors states that the

statistical methods are not suitable for structure domain, as is the case with FOL

62

Figure 5.1: Taxonomy of theory refinement tasks (Wrobel, 1996).

and DLs. Lastly, an ad-hoc method for Multiple Concept Learning is presented and

it su↵ers from the same problem of De Raedt et al. (1993) when transposing the

ideas to the DL setting. Moreover, this method lacks any of the previous similarity

with CDE’s, because the graph defining the dependencies is not created within the

learning process, on the contrary, it should be constructed by the user and be passed

as a parameter to the method.

5.2 THEORY RESTRUCTURING - R2D2

In (Wrobel, 1996) there is a summary of works done in theory refinement for

FOL. Theory refinement deals with the change of an existing theory to match a new

external criteria, as oppose to learning new theories from scratch as it is done in

ILP.

Because theory refinement makes changes on existing theories it can be seen as a

knowledge base maintenance task. Theory refinement methods can be divided into

theory revision and theory restructuring. The revision task changes the semantics

of an existing theory in order to cope with new examples that are wrongly inferred.

The restructuring task, on the other hand does not change the semantics of the

theory, but it is intended either to increase the performance or the understanding

of a theory. Figure 5.1 show a taxonomic overview of the refinement tasks.

R2D2 can be seen as a theory restructuring method for structure improving, i.e.,

understanding, to DLs. In this instance this proposed method might be used outside

63

the terminology learning problem.

Within this topic, Fender’s (Sommer, 1995b) goal is the same as ours. Fender

is a method of stratification of theories, i.e., it structures a theory into layers of

dependencies. It increases the number of layers, i.e., the dependencies within a

theory. To do so, it uses an operator named common partial premises, which finds

common groups of literals within the theory and creates new predicates from them

thus increasing the dependencies while reducing redundancy. Fender and R2D2

are similar in the sense that both have the same goal and a similar method. They

di↵er because R2D2 does not create new concepts (predicates), i.e., the common

groups can only be equal to an existing concept definition. Another theory restruc-

turing system is PFORTE PI (Revoredo et al., 2006, 2007), which uses the notion

of predicate invention to restructure a probabilistic first-order theory, thus di↵ering

from R2D2 in the way the compression is made.

Additionally, there are two sets of works related to ours: i) tree representation

of logical definitions, FOL (Fonseca et al., 2003) and DLs (Calvanese, 1996), and

ii) tree isomorphism. In the former, their representation di↵ers from ours in form,

as their objective di↵ers from ours. In general they use the tree representation to

improve the scalability of reasoning. To that extend the structure is, at large, and

ordered binary tree (in some cases the trees can have a larger degree). Because of the

commutation of n-ary constructors we can not use ordered trees as a representation,

as it would assume an order among the children, which is not suitable for syntactic

compression.

Algorithm 9 presented in section 3.3.1 finds equivalent subtrees within a tree

according to a matching tree. The equivalence of trees is well-known in the literature

as graph isomorphism or more specifically tree isomorphism. Graph isomorphism

is a NP-Complete problem (Read and Corneil, 1977), however in special cases it

has polynomial solutions: trees are in this group of special cases (Bodlaender, 1990;

Faulon, 1998; Buss, 1997; Messmer and Bunke, 1996; Shamir and Tsur, 1997). We

leave the investigation of more e�cient tree subgraph algorithms for future works.

6 CONCLUSIONS

This research showed three strategies for terminology learning considering the

induction of related, but distinct concepts in the Description Logic setting. The first

one, named CDE, automatically defines an order for learning the concepts, where

this order is represented by a taxonomy tree of the concepts. This is accomplished

by analyzing the taxonomic intersection of the examples sets associated to each

concept. The second one, named CDA, does not require such an order for learning

the collection of concepts. Instead, it assumes temporary assertions for all the other

concepts that are not selected to be learned. As the concepts may be considered

to be included in each other definition, we take an extra care to avoid definitions

with cycles or to remove them. The third method, name CDT (R2D2), is applied

after the terminology learning task is concluded. It substitutes sections by another

concept, if the section is syntactically equivalent to the concept’s definition. This

allows for syntactical compression while maintaining the semantics. In all the cases,

we expect that the returned terminologies are compact and readable descriptions of

the concepts included in the domain of discourse.

In order to validate CDT for syntactic compression we used a set of 46 datasets.

Among the datasets were some particularly large terminologies, one of them with

over ten thousand concepts. We then went on to verify the relationship between

the execution time and a terminology complexity. Analyzing the results, we con-

cluded that the relationship is exponential but, as it seems, only prohibiting on very

large terminologies, in the tens of thousands range; yet the method had reasonable

execution times in the low tens of thousand: around 30 minutes for a terminology

65

with 10280 concepts. In terminologies with less than two thousand concepts we

achieved runtime below the one minute mark. From the results, we came to the

conclusion that using the proposed method is advisable with a upward soft limit of

10280 concepts.

We validated our methods by examining results yielded from two domains: a

toy problem from the kinship domain and a more elaborated problem, denominated

“moral reasoner”. Both of them are freely available in the DL-Learner package. In the

first one, it was possible to observe that the terminology learned by CDE and CDA

was more compact than the one learned with DL-Learner (standard SCL system).

Moreover, CDA was more versatile than CDE. Analysing the second domain it was

possible to observe that the threshold parameter for defining a proper relationship

in CDE method gets more sensitive as the task is more complex. With a relatively

simple task, varying this parameter did not provide significantly di↵erent results.

Additionally, the completeness of individuals interferes in both CDE and CDA,

the later being more sensible, i.e. varying the size of the training set, and as a

consequence, the representativeness of the original individuals in the examples set

of each concept, yield di↵erent quality of terminology. As both methods strongly

rely on the set of examples to make crucial decisions, the closer from the original

individuals are the assertions, the better the approaches will behave. Finally, the

quantitative scores are only slightly a↵ected by the di↵erent learning process and

parameters. On the other hand, with the best selected threshold parameter and the

closest set of individuals to the original task, all the methods, with exception of CDT,

were able to fetch more compact and readable terminologies than the SCL. Both

CDA’s methods outperformed all the other methods, especially CDA

2

on Exp2.

However, this improved performance comes at a price, CDA

2

has to learn every

alternative definitions in order to remove existing cycles. CDT’s approach found

far less dependencies than its counterparts. This is due to the fact that syntactical

substitutions are far more unlikely when the set of concept learning problems have a

wide range of possible solutions. This happens because the learner selects for short

66

descriptions.

6.1 CONTRIBUTIONS

In this master dissertation we investigated the hypothesis that smaller terminolo-

gies can be induced when dependencies among the concepts that will be learned are

considered, one of the main contributions of this work is the empirical corroboration

of this claim.

In order to test the hypothesis we proposed three methods that utilize depen-

dencies among concept to discover smaller and more comprehensible terminologies,

they are:

• Concept Dependency through Examples (CDE);

• Concept Dependency through Assertions (CDA);

• Concept Dependency through Terminology (CDA).

Specific to CDA, we developed two alternative solutions that deal with the oc-

currence of cycles in the learned terminology: i) with cycle avoidance and ii) with

cycle removal. These can be used when one is working under the assumption that

terminologies are acyclic.

All the proposed methods were developed using the programming language Java

and are avalilable at https://github.com/raphael-melo/mcl, this is our main techni-

cal contribution.

To support our claims we developed, throughout this master dissertation, several

arguments and definitions related to the task of learning multiple concept definitions,

the value of simplifying terminologies and the use of the sets of examples as surro-

gates for a concept definition in the context of concept learning.

With regards to CDT, we proposed a representation for concept’s descriptions

using trees to deal with commutable constructors.

67

6.2 FUTURE WORK

An integral part of the terminology learning task involves learning a single con-

cept definition, which is learned using one of the existing methods. As future work,

a study of the underlying bias of this part of the process should be done, because

each method has a slightly di↵erent focus, either on the general to specific direc-

tion (Lehmann and Hitzler, 2010; Fanizzi et al., 2008) or in the specific to gen-

eral (Iannone et al., 2007) that may yields di↵erent results.

For CDT: i) Alternative more e�cient algorithms for CDT tree isomorphism; ii)

Allow the algorithms to find groups that are not a full concept definition, this will

allow the generation of new concepts, and a greater syntactical compression.

Investigate methods to remove deeper cycles for CDA with cycle removal.

Further experiments on di↵erent domains are necessary. Also, an interesting

questions is how the methods behave in datasets with noise.

On this research we intuitively assumed that the methods are language indepen-

dent, in a future work other DL languages and probabilistic DLs (Revoredo et al.,

2011) should be tested.

BIBLIOGRAPHY

Anderson, J. R., Michalski, R. S., Michalski, R. S., Carbonell, J. G., and Mitchell,

T. M. (1986). Machine Learning: An Artificial Intelligence Approach, volume 2.

Morgan Kaufmann.

Baader, F., Ganter, B., Sertkaya, B., and Sattler, U. (2007). Completing descrip-

tion logic knowledge bases using formal concept analysis. In In Proceedings of

International Joint Conference on Artificial Intelligence (IJCAI) 2007, volume 7,

pages 230–235.

Baader, F. and Nutt, W. (2010). Basic description logics. In Baader, F., McGuin-

ness, D. L., Nardi, D., and Patel-Schneider, P. F., editors, The Description Logic

Handbook, pages 47–100. Cambridge University Press, 2 edition.

Berners-Lee, T., Hendler, J., Lassila, O., et al. (2001). The semantic web. Scientific

american, 284(5):28–37.

Bodlaender, H. L. (1990). Polynomial algorithms for graph isomorphism and chro-

matic index on partial k-trees. Journal of Algorithms, 11(4):631 – 643.

Brachman, R. J. and Levesque, H. J. (2004). Knowledge Representation and Rea-

soning. Elsevier, 1st edition edition.

Buss, S. (1997). Alogtime algorithms for tree isomorphism, comparison, and can-

onization. In Gottlob, G., Leitsch, A., and Mundici, D., editors, Computational

Logic and Proof Theory, volume 1289 of Lecture Notes in Computer Science, pages

18–33. Springer Berlin Heidelberg.

69

Calvanese, D. (1996). Finite model reasoning in description logics. KR, 96:292–303.

De Raedt, L., Lavrac, N., and Dzeroski, S. (1993). Multiple predicate learning. In

Proceedings of the 13th International Joint Conference on Artificial Intelligence,

pages 1037–1042.

Distel, F. (2011). Learning Description Logic Knowledge Bases from Data Using

Methods from Formal Concept Analysis. PhD thesis, TU Dresden.

Domingos, P. (1998). Occam’s two razors: The sharp and the blunt. In KDD, pages

37–43.

Dowling, W. F. and Gallier, J. H. (1984). Linear-time algorithms for testing the

satisfiability of propositional Horn formulae. The Journal of Logic Programming,

1(3):267–284.

Fanizzi, N., d’Amato, C., and Esposito, F. (2008). Dl-foil concept learning in de-

scription logics. In Inductive Logic Programming, volume 5194 of Lecture Notes

in Computer Science, pages 107–121. Springer Berlin Heidelberg.

Faulon, J.-L. (1998). Isomorphism, automorphism partitioning, and canonical label-

ing can be solved in polynomial-time for molecular graphs. Journal of Chemical

Information and Computer Sciences, 38(3):432–444.

Fonseca, N., Rocha, R., Camacho, R., and Silva, F. (2003). E�cient data structures

for inductive logic programming. In Inductive Logic Programming, pages 130–145.

Springer.

Horn, A. (1951). On sentences which are true of direct unions of algebras. Journal

of Symbolic Logic, pages 14–21.

Hume, D. (2000). An Enquiry Concerning Human Understanding: A Critical Edi-

tion, volume 3. Oxford University Press.

Huth, M. and Ryan, M. (2004). Logic in Computer Science: Modelling and Reason-

ing about Systems. Cambridge University Press.

70

Iannone, L., Palmisano, I., and Fanizzi, N. (2007). An algorithm based on counter-

factuals for concept learning in the semantic web. Applied Intelligence, 26(2):139–

159.

Lavrac, N. and Dzeroski, S. (1994). Inductive logic programming. In WLP, pages

146–160. Springer.

Lehmann, J. (2007). Hybrid learning of ontology classes. In Perner, P., editor, Ma-

chine Learning and Data Mining in Pattern Recognition, volume 4571 of Lecture

Notes in Computer Science, pages 883–898. Springer Berlin Heidelberg.

Lehmann, J. (2009). Dl-learner: Learning concepts in description logics. Journal of

Machine Learning Research, 10:2639–2642.

Lehmann, J. and Hitzler, P. (2008a). Foundations of refinement operators for de-

scription logics. In Blockeel, H., Ramon, J., Shavlik, J., and Tadepalli, P., editors,

Inductive Logic Programming, volume 4894 of Lecture Notes in Computer Science,

pages 161–174. Springer Berlin Heidelberg.

Lehmann, J. and Hitzler, P. (2008b). A refinement operator based learning algo-

rithm for the ALC description logic. In Blockeel, H., Ramon, J., Shavlik, J., and

Tadepalli, P., editors, Inductive Logic Programming, volume 4894 of Lecture Notes

in Computer Science, pages 147–160. Springer Berlin Heidelberg.

Lehmann, J. and Hitzler, P. (2010). Concept learning in description logics using

refinement operators. Machine Learning, 78(1-2):203–250.

Maedche, A. and Staab, S. (2001). Ontology learning for the semantic web. IEEE

Intelligent Systems and Their Applications, 16(2):72–79.

Malerba, D., Semeraro, G., and Esposito, F. (1997). A multistrategy approach

to learning multiple dependent concepts. Machine learning and statistics: The

interface, pages 87–106.

71

Melo, R., Revoredo, K., and Paes, A. (2013a). Learning multiple description logics

concepts. In ILP 2013 Late Breaking Papers “to appear“.

Melo, R., Revoredo, K., and Paes, A. (2013b). Terminology learning through tax-

onomy discovery. In 2013 Brazilian Conference on Intelligent Systems, pages

169–174.

Melo, R., Revoredo, K., and Paes, A. (2014). Syntactic compression of description

logics terminologies. In Brazilian Conference on Intelligent Systems “to appear“.

Messmer, B. and Bunke, H. (1996). Subgraph isomorphism detection in polynomial

time on preprocessed model graphs. In Li, S., Mital, D., Teoh, E., and Wang, H.,

editors, Recent Developments in Computer Vision, volume 1035 of Lecture Notes

in Computer Science, pages 373–382. Springer Berlin Heidelberg.

Mitchell, T. (1997). Machine Learning. McGraw-Hill, New York.

Muggleton, S. (1991). Inductive logic programming. New Generation Computing,

8(4):295–318.

Muggleton, S. (1992). Inductive Logic Programming. Morgan Kaufmann.

Muggleton, S. and De Raedt, L. (1994). Inductive logic programming: Theory and

methods. The Journal of Logic Programming, 19:629–679.

Quinlan, J. R. and Cameron-Jones, R. M. (1993). FOIL: A midterm report. In

Machine Learning: ECML-93, pages 1–20. Springer.

Read, R. C. and Corneil, D. G. (1977). The graph isomorphism disease. Journal of

Graph Theory, 1(4):339–363.

Revoredo, K., Ochoa-Luna, J., and Cozman, F. G. (2011). Learning probabilistic

description logics: A framework and algorithms. In Batyrshin, I. and Sidorov,

G., editors, Advances in Artificial Intelligence, volume 7094 of Lecture Notes in

Computer Science, pages 28–39. Springer Berlin Heidelberg.

72

Revoredo, K., Paes, A., Zaverucha, G., and Costa, V. S. (2006). Combining predicate

invention and revision of probabilistic fol theories. In Short paper proceedings of

16th International Conference on Inductive Logic Programming (ILP-06), pages

176–178.

Revoredo, K., Paes, A., Zaverucha, G., and Costa, V. S. (2007). Combinando

invenção de predicados e revisão de teorias de primeira-ordem probabiĺısticas. In

VI Encontro Nacional de Inteligência Artificial (ENIA).

Robinson, J. A. (1965). A machine-oriented logic based on the resolution principle.

Journal of the ACM (JACM), 12(1):23–41.

Schmidt-Schauss, M. and Smolka, G. (1991). Attributive concept descriptions with

complements. Artificial Intelligence, 48:1–26.

Shamir, R. and Tsur, D. (1997). Faster subtree isomorphism. In Theory of Com-

puting and Systems, 1997., Proceedings of the Fifth Israeli Symposium on, pages

126–131.

Smolensky, P. (1987). Connectionist AI, symbolic AI, and the brain. Artificial

Intelligence Review, 1(2):95–109.

Sommer, E. (1995a). An approach to quantifying the quality of induced theories. In

Proceedings of the International Joint Conference on Artificial Intelligence (IJ-

CAI) 95-Workshop on Machine Learning and Comprehensibility. Citeseer.

Sommer, E. (1995b). FENDER: An approach to theory restructuring. In Machine

Learning: ECML-95, volume 912, pages 356–359. Springer Berlin Heidelberg.

Staab, S. and Studer, R. (2010). Handbook on ontologies. Springer.

Wogulis, J. L. (1994). An Approach to Repairing and Evaluating First-Order Theo-

ries Containing Multiple Concepts and Negation. PhD thesis, University of Cali-

fornia at Irvine.

73

Wrobel, S. (1996). First order theory refinement. Advances in Inductive Logic

Programming, 32:14–33.

Zemlyachenko, V., Korneenko, N., and Tyshkevich, R. (1985). Graph isomorphism

problem. Journal of Soviet Mathematics, 29(4):1426–1481.

Appendix A

OWA AND CWA AND THEIR RELATIONSHIP

WITH INFERENTIAL AND INDUCTIVE

REASONING

Usually Closed World Assumption (CWA) and Open World Assumption (OWA)

are related with inferential knowledge (deductive knowledge), in this case:

Definition 9 (Closed World Assumption). The truth-value of statements not cur-

rently known to be true is false.

Definition 10 (Open World Assumption). The truth-value of a statement is inde-

pendent of whether or not it is currently know.

When CWA is upheld, from Definition 9, an answer for a query can only be

“True” or “False”, i.e., and statement is either a logical consequence or not (Exam-

ple 12). Otherwise, when OWA is upheld, from Definition 10, an answer for a query

can be “True”, “False” or “Unknown”, something is unknown when it: i) does not

75

contradict any of the conditions and ii) does not satisfy all the necessary conditions

(Example 13).

Example 12. Using the kinship domain with its default semantics. Have a in-

dividual m1 whose only known assertion is “male(m1)”; and individual f1, whose

only known assertion is “female(f1)”. Let the concept definition for mother be:

mother ⌘ female u 9hasChild.>.
When upholding CWA, it would produce the following answers:

mother(f1)? False. mother(m1)? False.

Example 13. Using the kinship domain with its default semantics. Have a in-

dividual m1 whose only known assertion is “male(m1)”; and individual f1, whose

only known assertion is “female(f1)”. Let the concept definition for mother be:

mother ⌘ female u 9hasChild.>.
When upholding OWA, it would produce the following answers:

mother(f1)? Unknown. mother(m1)? False.

In the context of this work, we are dealing with inductive learning methods.

In the inductive setting, one may see a connection between the closed or open as-

sumption and the Problem of induction. The original problem of induction can be

simply put. It concerns the support or justification of inductive methods. Inductive

methods lack justification for either:

1. Generalizing the properties of a class of objects based on a finite number of

observations of particular instances of a class (for example, the inference that

“all swans seen so far are white, therefore all swans are white”, before a black

swan is known) or

2. The uniformity of nature(Hume, 2000)

The CWA and OWA in the case of inductive learning are related to point 1,

whether or not a inducted theory/terminology is justified based on the available

examples. It has been argued in the past that such problem is unsolvable (Hume,

76

2000), i.e., there is no logical justification for generalization based on a finite set of

examples (OWA). In practice this means that a learned theory/terminology should

be only tentatively accepted while no new contradictory examples are presented,

i.e., a theory is only correct with regards to a specific domain (CWA). Therefore,

while using induction to learn a theory/terminology one is in practice using a type

of CWA, in the sense that the induced theory/terminology is “only valid” on the

learning domain, one cannot assert that a finite domain is representative of the

universe.

Point 1 is also the reason behind the need of methods for theory revision.

One could also view a CWA and OWA with regards to the sets of examples for the

induction of a theory/terminology. When learning a theory T
i

, using a background

knowledge KB and a set of examples E
i

, on the learning domain D
l

; E
i

can be

divided into:

• Positives: examples that should be covered by T
i

;

• Negatives: examples that should not be covered by T
i

;

• Ignored: examples that should not directly a↵ect the inductive learning, but

can either belong or not to T
i

.

If, for a domain D
l

, it is possible to enumerate all positive examples E
ip , the

set of negative examples E
in is the complement of E

ip w.r.t. D
l

. This is the case,

because within the inductive learning method a individual either should be covered

by the candidate hypothesis or it should not, if all the individuals that should be

covered by T
i

are known all the others does not satisfy the requirements (w.r.t. D
l

)

of T
i

. When this restriction is meet, this can be seen as under the CWA1.

1On CDE and CDA we are referring to this type of CWA.

