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Resumo 

 

A oferta de pacotes de software prontos para uso e o aumento da disponibilidade de 

geoinformação digital sobre dados de ocorrência e dados ambientais impulsionaram 

consideravelmente a aplicação de modelos de nicho ecológico (MNEs) / modelos de 

distribuição de espécies (MDSs) nas últimas décadas, permitindo seu uso mais amplo 

para informar ações de conservação e gestão e para quantificar os impactos das 

mudanças globais. No entanto, embora os dados de entrada para MNE estejam cada vez 

mais disponíveis, definir procedimentos para minimizar as incertezas (espaciais, 

ambientais, temporais e taxonômicas) associadas aos dados de ocorrência e selecionar 

os preditores ambientais corretos continua sendo um desafio. Esta dissertação de 

mestrado, estruturada em três capítulos, concentra-se no desenvolvimento de 

abordagens para selecionar dados de entrada para ENMs com o objetivo de melhorar os 

modelos aplicados à análise de mudanças climáticas e conservação. Para ilustrar nossas 

abordagens, usamos um peixe ameaçado icônico, a Garoupa-Golias do Atlântico 

(Epinephelus itajara), como espécie modelo. No primeiro capítulo, desenvolvemos um 

arcabouço de várias etapas que foi capaz de apoiar a decisão sobre o uso de registros 

não confiáveis na modelagem de nicho ecológico para a espécie-alvo. Mostramos que 

os registros de ocorrência com incertezas diminuem o desempenho dos modelos, 

aumentando o erro de omissão e diminuindo sua capacidade de projetar os modelos do 

espaço ambiental para o espaço geográfico, levando a um baixo poder de predição de 

áreas adequadas. No segundo capítulo, comparamos modelos desenvolvidos com 

diferentes combinações de preditores ambientais para avaliar o efeito da adição de 

variáveis de habitat no desempenho de MNEs. Descobrimos que os preditores de habitat 

em combinação com o clima têm uma forte influência na precisão dos MNEs e nas 

previsões de adequabilidade. O modelo combinando clima / salinidade e preditores de 

habitat para diferentes habitats (EnvHabs) mostrou o melhor desempenho. Finalmente, 

no terceiro capítulo, aplicamos o melhor modelo (EnvHabs) identificado no segundo 

capítulo para avaliar os impactos das mudanças climáticas futuras na distribuição 

geográfica de E. itajara e discutir suas implicações do ponto de vista da conservação da 

espécie. 

Palavras-chave:  Biogeografia, Modelagem de Nicho Ecologico 



Abstract 

 

The offer of ready-to-use software packages and increasing availability of digital 

geoinformation about occurrence and environmetal data have considerably boosted the 

application of ecological niche models (ENMs)/species distribution models (SDMs)  in 

the past decades, greatly enabling their broader use for informing conservation and 

management, and for quantifying impacts from global change. However, although input 

data for ENM are increasingly available, to define procedures to both minimize 

uncertainties (spatial, environmental, temporal and taxonomic) associated to the 

occurrence data and to select the correct environmental predictors remain a challenge. 

This master thesis, structured into three chapters,  focuses on developing approaches to 

select input data for ENMs aiming to improve models applied to climate change and 

conservation analysis. To illustrate our approaches, we used an iconic threatened fish, 

the Atlantic Goliath Grouper (Epinephelus itajara), as a model species. In the first 

chapter, we developed a multiple steps framework that was able to support decision 

about the use of unreliable records in ecological niche modeling for the target species. 

We showed that uncertain occurrence records decrease the models' performance, 

increasing their omission error and decreasing their ability to project the models from 

the environmental space to the geographical space, leading to low power to predict 

suitable areas. In the second chapter, we compared models developed with different 

combinations of environmental predictors to assess the effect of adding habitat variables 

on ENMs performance. We found that habitat predictors in combination with climate 

have a strong influence on ENMs accuracy and suitability predictions. The model 

combining climate/salinity and habitat predictors for different habitats (EnvHabs) 

showed the best performance. Finally, in the third chapter, we applied the EnvHabs best 

model (EnvHabs) identified in the second chapter to assess the future climate change 

impacts on the geographic distribution of E. itajara and discuss its implications from a 

conservation point of view. 

 

Keywords:Biogeography, Ecological Niche Modeling 

 

 



List of figures 

 

Chapter 1: A framework to support decision about uncertainty occurrence records in 

ecological niche models 

Figure 1.1: Workflow proposed for assess the effect of uncertainties and biases in 

occurrence data for ENMs. The workflow procedures are grouped into three main steps: 

(1) occurrence data filtering (blue), (2) Ecological niche modeling (green), and (3) 

model and datasets evaluation and comparison (orange). 

Figure 1.2: Distribution of the occurrence records of Epinephelus itajara. Green dots - 

reliable records (Rd), red dots - unreliable records (Pd). 

Figure 1.3: Variation in model performance statistics among occurrence datasets and 

methods. 

Figure 1.4: Contribution of the environmental variables to model performance measured 

by AUC. Values are the mean and standard of all 250 models generated for each 

occurrence dataset (FullSet, Rd, Pd). 

Figure 1.5: Response curves (black solid line) of the ensemble models generated for the 

three occurrence datasets (FullSet, RdPd, PdRd). The gray shadow represents the 

confidence interval considering all 250 replicates for each of three occurrence datasets. 

Figure 1.6: Environmental suitability for Epinephelus itajara predicted by the ensemble 

models generated with the three occurrence datasets: FullSet (A), RdPd (B), and PdRd 

(C). Environmental suitability values (g 0.5) are represented from dark blue (minimum 

value) to red (maximum value).  

Figure 1.7: Temporal coverage of the occurrence datasets of Epinephelus itajara 

showing the percentage of unreliable (Pd) and reliable (Rd) records along the years. 

Figure 1.8: Environmental space of occurrence datasets of Epinephelus itajara 

summarized by the Principal Component Analysis composed by the five environmental 

variables used in the models. Red dots - unreliable records (Pd). Green dots - reliable 

records (Rd).  Blue dots - environmental conditions for the area accessible to the 



species, delimited by the ecoregions where the species is known to occur and adjacent, 

and sampled through 10,000 randomly distributed points. Dots are enclosed by ellipses 

encompassing 95% of the data. 

 

Chapter 2: Adding habitat predictors to ecological niche models: an approach to 

improve model accuracy and suitability predictions  

Figure 2.1: Spatial representation of the marine ecoregions (in ligth yellow) and the 92 

presence records (green dots) selected for ecological niche modeling. 

Figure 2.2: Euclidean distance variable for Seagrass habitat. Blueish colors indicate 

shorter distances to the appropriate seagrass areas and reddish colors indicate greater 

distances to the appropriate seagrass areas. The shortest distance found is 0 km and the 

largest distance is 4,973,768,000 km. 

Figure 2.3: Euclidean distance variable for the Mangrove habitat. Blueish colors 

indicate shorter distances to the appropriate areas of seagrass and reddish colors indicate 

greater distances to the appropriate areas of mangrove. The shortest distance found is 0 

km and the largest distance is 4,749,136,000 km. 

Figure 2.4: Euclidean distance variable for Rockyreef habitat. Blueish colors indicate 

shorter distances to the appropriate areas of rockyreef and reddish colors indicate 

greater distances to the appropriate areas of rockyreef. The shortest distance found is 0 

km and the largest distance is 3,644,155,000 km. 

Figure 2.5: Euclidean distance variable for the Coralreef habitat. Blueish colors indicate 

shorter distances to the appropriate areas of coralreef and reddish colors indicate greater 

distances to the appropriate areas of coralreef. The shortest distance found is 0 km and 

the largest distance is 5,370,715,500 km. 

Figure 2.6: Euclidean distance variable for the sum of all habitats. Blueish colors 

indicate shorter distances to the appropriate areas of all habitats and reddish colors 

indicate greater distances to the appropriate areas of all habitats. The shortest distance 

found is 0 km and the longest distance is 16,913,706,000 km. 

Figure 2.7: Boyce Index P/E Ratio curve for the four models:. (A) Env+SumHabs, (B) 

Env+Habs, (C) EnvOnly, (D) HabOnly. For all plots, the horizontal straight line is 



where the P/E ratio is equal to 1. The dashed lines are the limits for the classification 

between High Suitability (HS) and Moderate Suitable (MS), i.e., habitat suitability 

values before the first dashed line are Not Suitable (NS), values between the line are 

considered MS and values after the second line are considered HS. 

Figure 2.8: Environmental suitability for Epinephelus itajara predicted by the four 

ensemble models: (A) Env+SumHabs, (B) Env+Habs, (C) EnvOnly, (D) HabOnly. 

Dark blue colors represent High Suitability (HS) and and light blue colors represent 

Moderate Suitable (MS). 

 

Chapter 3: Applying ecological niche models optimized by habitat predictors to assess 

potential impacts of climate change on species distribution 

Figure 3.1: Environmental suitability for Epinephelus itajara predicted by the ensemble 

model in the present. Dark blue = High Suitability (HS), Light blue = Moderate 

Suitability (MS). 

Figure 3.2: Environmental suitability for Epinephelus itajara predicted by the ensemble 

model in the present. Dark blue = High Suitability (HS), Light blue = Moderate 

Suitability (MS). 

Figure 3.2: Environmental suitability for Epinephelus itajara predicted by the ensemble 

model in the future. Dark blue = High Suitability (HS), Light blue = Moderate 

Suitability (MS). 

Figure 3.3: Distribution of the stable areas for Epinephelus itajara. Green area represent 

stable areas for High Suitability (HS) pixels and yellow areas represent stable area for 

Moderate Suitability (MS) pixels. 

 

 

 

 

 

 



List of Tables 

 

Chapter 1: A framework to support decision about uncertainty occurrence records in 

ecological niche models 

Table 1.1: Mean (± SD) values of the evaluation metrics for all the 750 models 

generated for Epinephelus itajara (250 replicates for each of three occurrence dataset).  

Table 1.2: Two-factors factorial ANOVA results showing the effect of data partitioning 

(FullSet, RdPd, PdRd) and modeling methods (BRT, GLM, Maxent, RBF, SVM) on 

model performance metrics.  

Table 1.3: Tukey Honest Significance Differences (HSD) post-hoc test results showing 

the effect of data partitioning (FullSet, RdPd, PdRd) on model performance metrics.  

Table 1.4: Mean contribution (± standard deviation) of environmental variables to 

model construction of 250 replicates generated for each occurrence dataset (FullSet, Rd, 

Pd), measured by AUC.  biogeo08 = mean annual salinity; biogeo12 = annual variance 

in salinity, biogeo14 = sea temperature of the coldest months; biogeo15 = sea 

temperature of the hottest months. 

Table 1.5: Similarity, in the geographic space, of the modeling outputs generated by the 

three-occurrence dataset (FullSet, RdPd, PdRd). 

 

Chapter 2: Adding habitat predictors to ecological niche models: an approach to 

improve model accuracy and suitability predictions  

Table 2.1: Variables used to generate each ecological niche model. Salinity.Lt.min = 

Average minimum salinity records, Temperature Lt.max = Average maximum 

temperature records, Temperature.Lt.min = Average minimum temperature records, 

Dist.To.Mangrove = Euclidean distance variable for each  presence cell predicted as 

suitable for the mangrove ENM, Dist.To.Rockyreef = Euclidean distance variable for 

each presence cell predicted as suitable for the Rockyreef ENM, Dist.To.Seagrass = 

Euclidean distance variable for each presence cell predicted as suitable for the Seagrass 

ENM, Dist.To.Any.Hab = variable that represents the distances to all habitats. 



Table 2.2: Evaluation of the different ecological niche models for the Goliath grouper. 

Table 2.3: Total of area predicted as suitable (S), highly suitable (HS) and moderately 

suitable (MS) for Epinephelus itajara and total area under Marine Protected Areas. 

Table 2.4: Total predicted area within some pixel of human pressure. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Summary 
Resumo .......................................................................................................................... i 

Abstract ......................................................................................................................... ii 

List of figures ............................................................................................................... iii 

List of Tables ............................................................................................................... vi 

General Introduction ..................................................................................................... 1 

Chapter 1: A framework to support decision about uncertainty occurrence records in 
ecological niche models ................................................................................................ 5 

1.1 INTRODUCTION .................................................................................................. 5 

1.2 MATERIALS AND METHODS ............................................................................ 9 

1.3.0 RESULTS .......................................................................................................... 16 

1.4.0 DISCUSSION .................................................................................................... 22 

Chapter 2: Adding habitat predictors to ecological niche models: an approach to 
improve model accuracy and suitability predictions .................................................. 31 

INTRODUCTION ...................................................................................................... 31 

2.0 MATERIALS AND METHODS .......................................................................... 35 

3.0 RESULTS ............................................................................................................. 43 

4.0 DISCUSSION ....................................................................................................... 48 

Chapter 3: Ecological niche models predict, in a scenario of future climate change, a 
shift to high latitudes for a vulnerable species of grouper. ......................................... 54 

3.1 INTRODUCTION ................................................................................................ 54 

3.2 MATERIALS AND METHODS .......................................................................... 59 

3.3 RESULTS ............................................................................................................. 60 

3.4 DISCUSSION ....................................................................................................... 64 

General Conclusions ................................................................................................... 69 

References ................................................................................................................... 70 

Appendices ................................................................................................................ 102 

 

 



General Introduction 

 

 Due to anthropogenic activities the Earth systems are rapidly undergoing 

changes of enormous magnitude, which already achieve geological significance (Lewis 

et al., 2015; Araújo et al., 2019). Humanity is causing a rapid loss of biodiversity and, 

consequently, the Earth's ability to support complex life (Bradshaw et al., 2021). The 

increasing aware that biodiversity changes have important effects on human welfare and 

ecosystem services (Díazet al., 2019; Bradshaw et al., 2021) also increases the demand 

for our ability to forecast changes in biodiversity (Araújo et al., 2019). Forecasting the 

responses of biodiversity to multiple drivers of change is a difficult task, that often rely 

on the use of models to help risk assessment and support decision about conservation 

and management actions (Guisan et al., 2013; Araújo et al., 2019). 

 Among biodiversity modeling approaches applied to assess the impact of 

anthropogenic stressors and to hind/forecasting, one of the most used are the ecological 

niche models (ENMs) / species distribution models (SDMs) (Araújo et al., 2019). 

Discussions about the differences between the two terms can be found in Peterson and 

Soberón (2012) and  Soberón  et al. (2017). ENMs are correlative models that relate the 

species occurrence to environmental variables to define the species ecological niche in 

the environmental space, and then project it onto the geographical space to identify the 

potential distribution of the suitable environmental space for the species (Peterson et al., 

2011; Bellard et al., 2012). It is then possible to project this niche for different 

geographical space,  or for different timeframe in past or future climate scenarios, to 

determine the potential distribution of the suitable environmental space of the species 

(Peterson et al., 2011; Bellard et al., 2012).  

 Thanks to the offer of ready-to-use software packages and increasing availability 

of digital geoinformation related to environmental and species occurrence data, in the 

last decades ENMs have been widely applied to a broad set of conservation, ecological 

and evolutionary questions, including: discovery of new populations of known species, 

discovery of previously unknown species, spatial conservation prioritization, 

assessment of potential geographic ranges of invasive species, mapping risk of disease 

transmission, forecasting the effects of climate change on species distributions and on 

phylogenetic diversity, and identifying historical refugia for biodiversity (Peterson et al. 

2011; Lorini et al., 2015; Villero et al., 2017; Araújo et al., 2019; Melo-Merino et al., 



2020; Zurell et al., 2020). The begining and the most of the development of ENMs is 

broadly associated to terrestrial environments (Lorini et al., 2015; Villero et al., 2017; 

Araújo et al., 2019). Although the application of ENMs to aquatic species has been less 

frequent, in recent years this type of modeling has shown a growing trend in the marine 

realm (Robinson et al., 2017; Melo-Merino et al., 2020). 

 The processs of modelling species geographic distribution through ENMs rely 

on ecological niche theory (Soberón, 2007; Soberón and Nakamura, 2009; Peterson et 

al., 2011). The first niche concept adopted by the scientific community were proposed 

by Grinnell (1924), who took into account the environmental conditions and defined the 

ecological niche of a species as the suite of ecological conditions within which a species 

is capable of surviving and reproducing without immigrational subsidy. Next, Elton 

(1927) proposed that the interactions between species were crucial factors in the 

delimitation of the species niche, redefining the term ecological niche to refer to the 

functional role that a species plays in a community. Later, Hutchinson (1957) proposed 

a concept encompasses these two views and defines an ecological niche as a 

hypervolume, n-dimensional, whose axes encompass conditions, resources and 

interactions in which individuals of a species are able to survive, grow and reproduce. 

Hutchinson (1957) also proposed a distinction between the fundamental niche, the set of 

abiotic environmental conditions under which a species is able to persist indefinitely, 

and the realized niche, the part of the fundamental niche that is constrained by 

interactions with other species. 

Following these ideas, species9 ranges can be understood as resulting from three 

sets of factors (Soberón, 2007; Soberón and Nakamura, 2009; Peterson et al., 2011): (i) 

presence of environmental (abiotic or scenopoetic) conditions under which the species 

can establish, survive and reproduce; (ii) the biotic environment determined by the 

species interactions (e.g. resources, competition, predation, pathogens)  in which species 

can persist, and (iii) the area that is accessible to the species via its movement or 

dispersal capabilities. The representation of these range determinants has been captured 

in the so-called BAM diagram (B = Biotic, A = Abiotic, M = Movement), which has 

become a conceptual model to design ENMs (Soberón, 2007; Soberón & Nakamura, 

2009; Peterson et al., 2011, Barve et al., 2011). Therefore, species geographic ranges are 

the result of the dynamic interactions of those three sets of determinants. Due to the 

complexity surrounding biotic interactions (B) and because biotic interactions are hard 

to measure and represent in a spatially explicit format required by ENMs (Soberón and 



Nakamura, 2009), most correlative ENMs have been restricted to representations of 

abiotic conditions (A). This approach is supported by the Eltonian Noise Hypothesis 

(Soberón and Nakamura, 2009; Peterson et al., 2011), which proposes that biotic 

interactions seldom constitute a significant constraint on the distributional potential of 

species on large geographic extents and coarse resolutions, like those generally used in 

ENMs. Indeed, ecological interactions may not play a dominant role at the coarse 

resolution (>1km2) typically used in ENMs (Soberón, 2007; Hortal et al., 2010), and 

thousands of studies have demonstrated that ENMs can reach a good performance in 

describing the distribution of many species on the basis of A (but see Araújo et al., 

2014). 

Technically, the ENM process is supported by three fundamental pillars: (1) 

information about the species (physiological tolerance from occurrence data), (2) 

environmental variables (predictor variables) and (3) the analytical methods themselves 

(functions or models that relate species information to environmental predictors) (Lima-

Ribeiro and Diniz-Filho, 2013). The procedures related to processing, filtering and 

selection of the occurrence data and predictor variables have great influence on the 

ENM performances and outputs (Araújo et al., 2019). Although occurrence data are 

increasingly available, unfortunately, not all data are of the same quality as they are 

subject to uneven sampling, taxonomic misidentification, errors in spatial coordinates 

and other data entry errors. Hence there is a need for adequate quality control  aiming to 

minimize spatial, environmental, temporal and taxonomic uncertainties associated to  

the occurrence data (Araújo et al., 2019; Zizka et al., 2019; Zurell et al., 2020).

Similarly, while environmental data are increasingly available, the selection of the 

environmental predictors is not always obvious. Indeed, although the choice of the 

correct predictors used for ENMs is crucial in determining suitable habitat for a species 

and hence their predicted distributionis, this process is a persistent challenge (Petitpierre 

et al., 2017; Bosch et al., 2018; Araújo et al., 2019; Zurell et al., 2020). 

 

This master thesis focuses on developing approaches to select input data for 

ENMs aiming to improve models applied to climate change and conservation analysis. 

To illustrate our approaches, we used the Atlantic Goliath Grouper (Epinephelus 

itajara) as the study system. This iconic threatened fish is a species of conservation 

concern, categorized as globally Vulnerable to extinction and very popular for fishing 

(Beroncini et al. 2018). The occurrence records for this species are associated with 



different uncertainty levels. This tropical species presents dependence on different types 

of coastal habitats (estuaries, rocky shores, coral reefs). Those characteristics make 

Epinephelus itajara a particularly valuable model species for our proposals. The thesis 

is structured in three chapters that focused on two of the fundamental pillars of ENM, 

the occurrence data (Chapter 1) and predictor variables (Chapters 2 and 3). In the first 

chapter, we addressed the problem of deal with biases and different levels of 

uncertainties in occurrence datasets, and proposed a framework to support decision 

about to discard or use unreliable records in occurrences datasets. In the second chapter, 

we developed models with different combinations of environmental predictors to 

asssess the effect of adding habitat variables on the performance of ENMs. At last, in 

the third chapter we applied the best model approach developed in the second chapter to 

improve the analysis of future climate change impacts on the range of Epinephelus 

itajara.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 1: A framework to support decision about 

uncertainty occurrence records in ecological niche models 

 

1.1 INTRODUCTION 

  

 Information on species distribution is essential to answer biogeographic 

(Lomolino, 2004) ecological (Brown et al., 1996) and evolutionary (Holt, 2003) 

questions, and to support decisions regarding biodiversity management and 

conservation (Boitani et al., 2011; Jetz et al., 2012; Villero et al., 2017). In the last 

decades, the interest in understanding the distribution of global biodiversity has 

increased due to the need to protect it, in face to the continuous and widespread decline 

of biodiversity, and significant reduction of nature9s capacity to contribute to people9s 

well-being (MEA, 2005; IPBES, 2019; Halpern et al., 2019). Concomitantly, Ecological 

Niche Models (ENMs) have emerged as an interesting and efficient approach to analyze 

species geographic distributions, and have been used in a myriad of different 

applications (Guisan & Thuiller, 2005; Elith & Leathwick, 2009; Peterson et al., 2011; 

Villero et al., 2017). These correlative models relate the species occurrence to 

environmental variables to define the species ecological niche in the environmental 

space, and then project it onto the geographical space to identify the potential 

distribution of the suitable environmental space for the species (Peterson et al., 2011; 

Bellard et al., 2012).  

 The widespread application of ENMs is, in great part, driven by an increasing of 

digital freely accessible occurrence data (Anderson, 2012). A huge number of 

occurrence records has become available in biodiversity or citizen science databases, 

offering a great possibility for the application of ENM approach to many species 

(Guralnick et al., 2007; Varela et al., 2014). Occurrence records available in  

repositories such as the Global Biodiversity Information Facility (GBIF) are crucial for 

conservation, biogeography and macroecology studies as they are a permanent record of 

a species in a particular location at a particular point in time (Funk and Richardson, 

2002). But data contained in these databases are a highly heterogeneous compilation of 

records. Such datasets include information from preserved specimens in museums and 

herbaria; university databases; governmental organization databases; NGO databases; 



researchers field work; amateurs field work, resulting in a compilation of records 

gathered opportunistically or from hundreds of different surveys, each one designed 

with a different goal (Varela et al., 2014). Consequently, these datasets are prone to 

errors and biases (Graham et al., 2004; Ensing et al., 2013; Costa et al., 2015; Troudet et 

al., 2017).  

 The uncertainties of occurrence datasets are spatial, environmental, temporal and 

taxonomic (Boakes et al., 2010; Faith and Walker, 1996; Funk et al., 1999; Soberón et 

al., 2000; Sousa-Baena et al., 2014). Reliability of occurrence records, which primarily 

refers to the accuracy of the species9 identification, is an obvious issue to ENM 

(Graham et al., 2004; McKelvey et al., 2008; Lozier et al., 2012; Ensing et al., 2013; 

Costa et al., 2015; Aubry et al., 2017). In addition, the dynamic nature of the accepted 

taxonomies can also contribute to misidentifications, as different names may be given to 

the same species depending on the date of the collect or taxonomic determination of the 

record (Graham et al., 2004; Newbold, 2010). Temporal mismatches of occurrences 

records and environmental predictors can impact significantly the results of ENMs 

(Roubicek et al., 2010). Positional uncertainties of the occurrence data can affect the 

performance and interpretation of species distribution models (Wieczorek et al., 2004; 

Graham et al., 2008; Osborne & Leitão, 2009; Soultan & Safi, 2017). However, all 

these uncertainties have received less attention than occurrence data biases (Gueta & 

Carmel, 2016).  

 Several studies show that there is uneven spatial coverage in sampling (Austin 

and Meyers, 1996; Cheng et al., 2013; Dennis and Thomas, 2000; Kadmon et al., 2009; 

Meyer et al., 2016, 2015; Reddy and Dávalos, 2003; Soberón et al., 2000) and there are 

evidences that these limitations may be driven mostly by the physical accessibility (e.g. 

Kadmon et al., 2004; Amano and Sutherland, 2013; Ballesteros-Mejia et al., 2013; Lin 

et al., 2015), but also by the proximity of researchers (Moerman & Estabrook, 2006); 

socio-economic differences (Newbold, 2010) and lack of financial resources (Ahrends 

et al., 2011; Amano and Sutherland, 2013; Vollmar et al., 2010), low international 

scientific cooperation (Amano and Sutherland, 2013); lack of access to a region for 

security reasons (Amano and Sutherland, 2013; Ballesteros-Mejia et al., 2013; 

Moerman and Estabrook, 2006) and finally focus on regions with a high level of 

endemic species or protected areas (Boakes et al., 2010; Yang et al., 2013). Sample bias 

in geographic space may not be a problem until the records cause an environmental bias 

(Austin and Meyers, 1996; Kadmon et al., 2009). However, bias in geographical space 



has already been proven to cause bias in environmental space (e.g. Gonzalez, 2010; 

Funk & Richardson, 2002) and should be taken with extreme caution (Guisan and 

Thuiller, 2005). Bias in the environmental space in which the species9 niche are 

modeled can cause over-representation of environmental conditions associated with 

regions of clustered sampling (Boria et al., 2014), misinterpretation of significance of 

environmental predictors (Kühn, 2007), and inflated estimates of model performance 

(Hijmans, 2012; Hijmans & Hall, 2016; Veloz, 2009). Geographic sample biases can 

lead to inaccurate inferences and predicted distributions of ENMs (Stolar & Nielsen, 

2015), and several approaches exist to account for it (e.g. Phillips et al., 2009; 

Chakraborty et al., 2011; Fithian & Hastie, 2013; Renner & Warton, 2013; Varela et al., 

2014, Warren et al., 2014, Boria et al., 2014, Fourcade et al., 2014, Fithian et al. 2015, 

Stolar & Nielsen, 2015; Aiello-Lammens et al. 2015), but none of these approaches 

solved the problem completely. 

 There is a general agreement in the literature that uncertainties and biases in 

occurrence data have negative effects on the ENMs and that the modelers should deal 

with them. On the other hand, there is also a great consensus that low sample size 

decreases accuracy of ENMs. Model performance is known to rapidly decrease for 

sample sizes smaller than 20, although the minimum number of species occurrences 

needed to produce accurate models still remains debatable (Stockwell & Peterson, 2002; 

Drake et al., 2006; Hernandez et al., 2006; Pearson et al., 2007; Papeş & Gaubert et al., 

2007; Loiselle et al., 2008; Wisz et al., 2008; Mateo et al., 2010; Marini et al., 2010; van 

Proosdij et al., 2016). Consequently, there is a trade-off between attaining a minimum 

level of uncertainties/biases and maintaining the maximum number of occurrences in 

the dataset. This is challenge for species whose distributions present disjunctions or 

high environmental heterogeneity, which are prone to environmental biases, and for 

rare, poorly known or elusive species, which are prone to uncertainties and small 

number of occurrences. Implications of this decision about how to treat uncertainties 

and biases of occurrence data can be especially severe for threatened species, when the 

ENM predictions may be used to guide management and conservation actions (Sofaer et 

al., 2019). Moreover, modelers working with tropical species often have to face the 

problem of small number of available occurrences (Cayuela et al., 2009; Feeley & 

Silman, 2011; Feeley et al., 2015). At the same time, it is precisely in tropical regions 

that information on the distribution of biodiversity is most needed (Funk & Richardson, 



2002; Cayuela et al., 2009; Feeley & Silman, 2011; Feeley et al., 2015), a lack of 

knowledge referred as the <data void= problem by Feeley and Silman (2011). 

 Although several approaches regarding how to deal with occurrences geographic 

biases are available in the literature, there is a lack of approaches to guide the modelers 

how to deal with distinct types of uncertainties and biases together. Moreover, unlike to 

well-studied effects of the geographic biases, much less is known about the impact of 

temporal biases. One of those few studies (Reside et al., 2011) showed that including 

historical and low-resolution records would decrease the accuracy and quality of ENMs 

and that deleting these records would be the best option. But what happens when part of 

the geographic distribution information is based on old, single source, low-resolution 

occurrence records? This kind of Wallacean shortfall is presented by many species, 

especially in tropical regions (Cayuela et al., 2009; Feeley & Silman, 2011; Feeley et 

al., 2015), rising the question about what do with these low reliability records. Would 

the inclusion of these unreliable records in a model to improve sample size, and 

environmental and geographic coverage compensate the increased chance of error 

caused by coarse or inaccurate data? Or should we exclude those records before starting 

the modeling process?  

 Here, we addressed this problem analyzing the occurrence data for the Atlantic 

Goliath Grouper (Epinephelus itajara). The species is exemplar to illustrate such a kind 

of Wallacean shortfall due to its amphi-Atlantic distribution, with disjunct populations 

in Western and Eastern Atlantic coasts, and uncertainties associated to African 

occurrence records (Craig, 2015). The historical distribution of this species 

encompasses the Western Atlantic Ocean coast from Brazil to United States, and 

Eastern Atlantic coast between Senegal and Angola. Epinephelus itajara is the largest 

grouper in the Atlantic (up to 2 m and 400 kg), being currently assessed as globally 

Vulnerable to extinction according to the IUCN Red List of Threatened Species 

(Bertoncini et al., 2018). The Atlantic Goliath Group is suspected to have declined on a 

global-level and might have been locally extinct in the African continent due to 

overfishing (Craig, 2015). Furthermore, reliable and recent records are geographically 

associated to the Western Atlantic whilst poor data are concentrated in the Eastern 

Atlantic. Sampling and conservation efforts are higher in the western portion of its 

distribution compared to the eastern portion (Craig et al., 2009) and available 

occurrence data in Eastern Atlantic are practically restricted to online databases (GBIF). 



 Our study workflow encompasses procedures in multiple steps to deal with 

biases and with different levels of uncertainties in occurrence datasets of Epinephelus 

itajara. We applied a multifaceted approach to evaluate the models (different 

performance metrics, spatial prediction ability, importance of predictors, behavior of 

response curves), and the occurrence datasets (temporal and environmental coverage) to 

support decision about to discard or use unreliable records in ecological niche / species 

distribution modeling. Within this framework, we assessed the uncertainty and biases of 

the occurrence records and tested two hypotheses:  

(H1) Uncertainty level in occurrence datasets will affect ENMs performance, even after 

filtered to eliminate records flagged as very high uncertainty and reduce bias and spatial 

autocorrelation. 

(H2) Model accuracy will be lower in ENMs calibrated with occurrence datasets with 

high uncertainty level. 

 

1.2 MATERIALS AND METHODS 

 

 To deal with and assess the effect of uncertainties and biases in occurrence data  

of Epinephelus itajara in ENMs, we divided the analysis workflow into three main 

steps (Figure 1.1): (1) we classified the uncertainty level of the occurrence data, applied 

filter to remove very high uncertainty records and spatial biases, and created the 

occurrence datasets with different levels of reliability to be used in modeling; (2) 

generated ENMs to each occurrence dataset; and (3) evaluated models accuracy and 

occurrence datasets through multiple aspects, then make decision about unreliable 

records (Figure 1.1). 

 

1.2.1 Occurrence data filtering 

 

 We compiled occurrence data for E. itajara from online databases, literature and 

specialists9 personal communications. Online repositories included: Global Biodiversity 

Information Facility (http://www.gbif.org ; Ocean Biogeographic Information System 

(https://obis.org ; FishBase (https://www.fishbase.de ; SpeciesLink 

(http://splink.cria.org.br ; Sistema de Informação sobre a Biodiversidade Brasileira 



(http://www.sibbr.gov.br). The literature survey for published papers was conducted 

online through Web of Science and Google Scholar search engines using "Epinephelus 

itajara" as search terms, resulting in five principal sources (Artero et al., 2015; Creed et 

al., 2007; Damasceno et al., 2015; Tzadik et al., 2017; Zapelini et al., 2017). We 

contacted more than 20 fish and grouper experts and occurrence data were provided by 

six from these specialists. The compiled occurrence dataset totalized 18,424 records. 

 We evaluated the compiled data for taxonomic, spatial and temporal 

uncertainties and classified them into four levels of uncertainty: low, medium, high and 

very high. Records misidentified as E. itajara (Craig et al., 2009), with geographic 

inconsistencies (records located on land; with incompatible latitude and longitude; with 

coordinates inconsistent with associated locality; or too far from the species' Extent of 

Occurrence polygon provided by IUCN) or old records (dated from before 1960) were 

assigned to the very high uncertainty level. Records from literature or from localities 

provided by specialists were assigned to the low uncertainty level. Records from 

repositories were classified according to their proximity to the records from literature or 

provided by specialists: records with higher proximity (<50km) were assigned to the 

medium uncertainty level, while records with lesser proximity (g 50km) were assigned 

to the high uncertainty level. We then discarded the records assigned to the very high 

uncertainty level and after this procedure the occurrence dataset totalized 8,453 records.  



 
 
Figure 1.1: Workflow proposed for assess the effect of uncertainties and biases in occurrence 
data for ENMs. The workflow procedures are grouped into three main steps: (1) occurrence data 
filtering (blue), (2) Ecological niche modeling (green), and (3) model and datasets evaluation 
and comparison (orange). 
 

 Spatial autocorrelation (SAC) and sample bias can lead to niche model 

uncertainties (F. Dormann et al., 2007). Specifically, SAC and sample bias violate the 

assumption that records are independent and randomly distributed, which can lead to 

model inflation, thus, raising Type I Error. Many methods have been tested to mitigate 



such problems, but there is no consensus about their efficiency (El-Gabbas and 

Dormann, 2018a, 2018b; F. Dormann et al., 2007). Here we applied a spatial rarefaction 

that eliminates records closer to each other than the expected mean distance in random 

sets with the same number of points, implemented by the SDMToolbox tool (Brown, 

2014). We used Average Nearest Neighbor analysis (Chen & Getis, 1998) to estimate 

the expected mean distance for a hypothetical random distribution of a set with 8,453 

points (= 50.4 km). Therefore, we defined 50 km as a distance threshold for rarefaction 

in the E. itajara dataset. We also used Average Nearest Neighbor Ratio 

(expected/observed mean distance) to test the presence of clustering (ANNR < 1) or 

dispersion (ANNR > 1) patterns in datasets before and after the spatial rarefaction. To 

avoid distortions, distance calculations were computed with data in equidistant 

projection. All procedures were performed in ArcMap 10.5 (ESRI 2018). 

 Subsequently, we created three datasets based on records uncertainty level: 

Reliable Data (Rd) - grouping records assigned as the low or medium uncertainty level; 

Unreliable Poor Data (Pd) - grouping records assigned as the high uncertainty level; and 

Full Data (FullSet) - grouping all records.  

 

1.2.2 Ecological niche modeling 

 

 We used the correlative ENM approach to associate occurrence data for E. 

itajara to environmental predictors and then identify areas that are ecologically suitable 

for the species. We ran ecological niche models for each occurrence dataset (Rd, Pd, 

FullSet) developed in the previous step. 

 Considering that the species occurs in shallow and coastal waters, we delimited a 

calibration area for ENMs based on the World Marine Ecoregions (SPALDING et al., 

2007) in which species was present, plus those ecoregions immediately adjacent (see 

Appendix 1, Figure S1, Table S1). This calibration area has a larger spatial extent than 

the species distribution range, but restricts modeling to accessible area over time, 

because some model performance evaluation metrics tend to increase artificially as the 

geographical extent of the analysis also increases (Barve et al., 2011). We used the 

limits of the selected ecoregions to clip the environmental predictors. 

 Environmental predictors at a resolution of 5 arc-minutes (~10km) were 

obtained from the MARSPEC database (Sbrocco and Barber, 2013). We have compiled 



an initial set of 11 predictors, including 10 climate variables representing annual 

averages, extremes and annual variances for ocean surface temperature (SST) and 

surface salinity (SSS), plus one geophysical variable representing bathymetry. These 

predictors were selected to represent a spectrum of environmental characteristics that 

can be related to ecological features of the target species and are often used in modeling 

distribution of marine species (Sandman et al., 2013; Bradie & Leung, 2017). The final 

selection of variables was based on three main aspects: biological relevance to influence 

marine fish (Sandman et al., 2013; Bradie & Leung, 2017; Goodyear et al., 2017) and E. 

itajara distribution (Gilmore et al., 1978; Eklund & Schull, 2001; Frias-Torres, 2006; 

Koenig et al. 2007; Chapman et al. 2014; Shideler et al., 2015); reduction of collinearity 

of the variables of the original set; and greater contribution to the model. Collinearity 

among predictors can decrease the efficiency and also increase the uncertainty of niche 

models (De Marco and Nóbrega, 2018). Reduction of collinearity was evaluated 

through a pairwise Spearman9s correlation matrix and variables most correlated (r² g | 

0.7 |) were excluded from the final predictors set. Variables' contribution was assessed 

trough a Jackknife approach using the models generate with all variables in a 

preliminary phase (see details in Appendix 2, Table S2). The three-criteria selection 

resulted in a final set of five environmental predictors to be used in ENMs: bathymetry 

of the ocean floor; biogeo08: mean annual salinity; biogeo12: annual variance in 

salinity, biogeo14: sea temperature of the coldest months; biogeo15: sea temperature of 

the hottest months. 

 ENMs were generated using several algorithms combined in a final ensemble 

model to reduce uncertainties (Araújo & New, 2007; Qiao et al., 2015). A total of five 

algorithms were chosen to build the models: (i) Generalized Linear Model (GLM), (ii) 

Boosted Regression Tree (BRT), (iii) Maximum Entropy (Maxent), (vi) Support Vector 

Machine (SVM) and (v) Radial Basis Function (RBF). Together these algorithms cover 

a considerable range of different widely used modeling techniques and are among the 

best performing (Babak Naimi unpublished data). Modeling procedures were conducted 

in the "sdm" package (Naimi and Araújo, 2016) on the R platform (R Core Team, 

2016). We created three sets of models: (i) RdPd - models calibrated with the low and 

medium uncertainty records (Rd) and independent validated with the high uncertainty 

(Pd) records, (ii) PdRd - models calibrated with high uncertainty records (Pd) and 

independent validated with low and medium uncertainty (Rd) records and (iii) FullSet - 

calibration and validation with full dataset partitions (FullSet). For each algorithm we 



ran fifty replicas of models created from the bootstrapping method.  Except Maxent, the 

other four algorithms use presence and absence or pseudo-absence to fit models.  

Considering that the number of pseudo-absences can influence the accuracy (ability to 

predict suitable or unsuitable areas) of the models (Barbet-Massin et al., 2012), we 

performed a sensitivity analysis to identify the better option of pseudo-absence-to-

presence ratio. We used a 1:1 ratio to generate pseudo-absences, following the results of 

the preliminary sensitivity analysis (see details in Appendix 3, Table S3). Then we 

create pseudo-absences, which were randomly generated in the geographic space of 

calibration, excluding cells with detected presence plus a 50 km buffer. For Maxent we 

generated a set of 10,000 randomly distributed background points.  

 

1.2.3 Models and datasets evaluation and comparison 

 

 We evaluated the performance of the 750 models generated (5 algorithms * 50 

replicates * 3 occurrence datasets) using a combination of four different one-threshold-

independent and -dependent evaluation metrics. From these discrimination metrics, the 

Area Under the Curve (AUC) of the Receiver-Operating Characteristic (Fielding & 

Bell, 1997); is one-threshold-independent. An AUC score of 1 indicates a perfect fit of 

the data, 0.5 is no better than random (Elith et al., 2006). Model performance and AUC 

values can be related as follows: poor to fair (0.5 – 0.7), moderate (> 0.7 – 0.8), good (> 

0.8 – 0.9) and very good (> 0.9) (Swets, 1988; Franklin, 2010) The other three metrics, 

Sensitivity, Omission Error and True Skill Statistics (TSS) (Allouche et al., 2006), are 

one-threshold-dependent and were generated in the confusion matrix using the threshold 

that maximize TSS (MAX TSS) (Liu et al., 2013). This threshold is one the most 

recommended method and has been proved valid to use when pseudo-absences are used 

instead of true absences (Liu et al., 2013). Sensitivity is the detected presence ratio 

predicted as such, so it quantifies omission error (Type II Error). The TSS is calculated 

by the formula Sensitivity + Specificity - 1, i.e., it takes into account errors of omission 

and commission, ranges from − 1 to + 1, where + 1 indicates a perfect classification 

model, zero or less indicate performance no better than random (Allouche et al., 2006). 

At a given threshold, a model performs accurately if it scores a TSS > 0.5 (Allouche et 

al., 2006; Liu et al., 2011). Model performance and TSS values can be related as 

follows: poor (< 0.4), moderate (0.4 > 0.6), good (0.6 - 0.75), and very good (> 0.75) 



(Landis & Koch, 1977; Capinha et al., 2014). We did not take Specificity into account, 

as we were interested in assessing whether our models would be able to detect 

occurrence records as such (true positive rate). Therefore, to our aim the more important 

evaluation metrics to accounting for were Sensitivity and Omission Error (Type II 

Error). We considered plausible models those reached TSS values of 0.5 or higher 

(Silva et al., 2014).  Next, we built consensus ENMs using only plausible models (TSS 

g 0.5), and applying TSS weighted average ensemble method (Araújo & New, 2007; 

Marmion et al., 2009). 

 To evaluate the uncertainty in evaluation metric generated by modeling 

components (data partitioning vs. modeling methods) - i.e., if each evaluation metric 

significantly differed among models generated for each of the three occurrence datasets 

(RdPd, PdRd and FullSet) along the five modeling methods (BRT, GLM, Maxent, RBF, 

SVM) - we used a two-factor factorial ANOVA (Sensitivity / Type II Error / TSS / 

AUC ~ methods * data group) and Tukey Honest Significance Differences (HSD) post-

hoc test (Fournier et al., 2017).  

 Comparisons of the models in the environmental space were carried out by 

analyzing the response curves and the variable importance associated to RdPd, PdRd 

and FullSet models. We evaluated the relative importance of each variable in predicting 

the distribution of the species in each model using the "getVarImp" function in the 

"sdm" package. The response curves of important predictors, which describe variation 

of the species suitability along the gradient of each variable, were also plotted to 

identify inconsistent behavior, such as erratic curves or large standard deviations and 

confidence intervals (Hannemann et al., 2016). 

 To assess the extent of change in predicted suitability (in the geographical space) 

caused by differences among occurrence datasets, we used Schoener's D statistic. We 

computed pairwise Schoener's D for the raster predictions of the three models (RdPd, 

PdRd, FullSet) in R package 8dismo9 (Hijmans et al., 2016). Schoener's D ranges from 0 

(no overlap in predicted suitability) to 1 (complete overlap, identical predictions) and 

provides a measure of the similarity of two modeling outputs in the geographic space 

(Warren et al., 2008). We also compared the ability of consensus models to predict 

suitable areas for E. itajara within the species' EOO under a fixed threshold (suitability 

value g 0.5). To avoid distortions, area calculations were performed with data in the 

World Miller Cylindrical equivalent projection. We also evaluated occurrence data sets 

regarding temporal and environmental coverage. To analyze the temporal coverage we 



computed the ratio between time span of the records in the dataset and time span of all 

records. To analyze the environmental coverage, we overlapped the reliable (Rd) and 

unreliable (Pd) occurrence records with the environmental predictors used in the 

modeling, and extracted the value for each pixel. Then we performed a Principal 

Component Analysis to associate the occurrence records to the environmental 

predictors. PCA was used to identify the internal structure of the data and to investigate 

the similarity between reliable (Rd) and unreliable (Pd) occurrence datasets in the 

environmental space. This technique is used to represent the "environmental niche" 

occupied by the species (Janžekovič & Novak, 2012). 

 Finally, we developed guidelines to the decision about discard or retain 

unreliable records (Pd). Following the workflow, if the analyses in the evaluation step 

indicate that: (i) models fitted with data filtered to reduce uncertainty and biases (RdPd) 

outperformed those fitted with unfiltered data (PdRd), especially in Sensitivity, 

Omission Error; (ii) PdRd models presented inconsistent response curves; (iii) Pd 

represented a subset of Rd in the environmental space, and (iv) Pd presented low 

temporal coverage with only old records, then we propose discard the Pd records and 

use the RdPd model results. Otherwise, if the evaluation analysis indicates that: (v) 

models fitted with filtered data (RdPd) did not outperform those fitted with unfiltered 

data (PdRd), especially in Sensitivity, Omission Error; (vi) PdRd models presented 

consistent response curves; (vii) Pd did not represent a subset of Rd in the 

environmental space, and (viii) Pd presented a reasonable temporal coverage with old 

and new records, then we propose maintain the Pd records and use the FullSet model 

results. 

 

1.3.0 Results 

 

1.3.1 Occurrence filtered datasets 

 

 From the total geo-referenced unique occurrences records of Epinephelus itajara 

compiled from all sources (n = 14,027), more than one third represented records 

assigned to very high uncertainty level (n = 5,574). These very unreliable records were 

discarded and this procedure filtered out 39.74% of the compiled data. The remained 



dataset was reduced to 8,453 occurrences, where those assigned to low, medium and 

high uncertainty level summed 65, 8319, and 69 records, respectively.  

 Subsequently, the spatial rarefaction procedure applied for this filtered E. itajara 

dataset (distance threshold = 50 km, based on a expected mean distance = 50.4 km, 

estimated through an average nearest neighbor analysis) was able to remove the 

clustering pattern presented by these 8,453 occurrences. Before spatial rarefaction the 

occurrence dataset presented a significantly clustered pattern (Nearest Neighbor Ratio: 

0.53, z-score: -18.23, p-value: < 0.0001). After rarefaction, the occurrence dataset (138 

records retained) did not differ from a random pattern (Nearest Neighbor Ratio: 1.02, z-

score: 0.35, p-value: 0.730). Cumulative with the first filter, rarefaction procedure 

filtered out 99.02% of the compiled data. 

 At the end, three datasets were created with the 138 filtered records (Figure 1.2): 

Reliable Data (Rd) - grouping the 83 records assigned as the low or medium uncertainty 

level; Unreliable Poor Data (Pd) - grouping the 55 records assigned as the high 

uncertainty level; and Full Data (FullSet) - grouping all records. All the datasets 

presented a sample size at least twofold higher than the minimum size considered prone 

to decrease model performance. Rd and Pd presented a geographic disjunct distribution, 

in Western and Eastern Atlantic, respectively (Figure 1.2).  

 

 

 
Figure 1.2: Distribution of the occurrence records of Epinephelus itajara. Green dots represent 
data collected from online databases (<50km proximity from reliable occurrence records), from 
literature and from localities provided by specialists. Red dots represent data collected from 



online databases (>50km proximity from reliable occurrence records) . Black line represents the 
Extent of Occurrence polygon from IUCN( https://www.iucn.org/). 
 

1.3.2. Models and occurrence datasets evaluation 

 Evaluation metrics for UdRd models differed significantly from the rest (figure 

1.3). This model had the lowest values for Sensibility, AUC, TSS and the highest values 

for Type II Error metrics. The unreliable dataset (UdRd) presented median values of 

0.90 for Sensibility, 0.10 for Type II Error, 0.72 for TSS and 0.87 for AUC, whilst the 

FullSet and RdUd present values of 0.96 and 0.98 for Sensibility, 0.04 and 0.02 for 

Type II Error, 0.82 and 0.90 for TSS and 0.94 and 0.90 for AUC, respectively (figure 

1.3). Moreover, the Kernel Density Estimation plot, represented as a violin plot in figure 

1.3, shows that, for the FullSet and RdUd group, the higher percentage of the data are 

clustered around the median value whereas for the UdRd, the data are more scattered. 

 
Figure 1.3: Evaluation metrics (Sensibility, Type II Error, TSS and AUC) for all three data 
groups (FullSet, UdRd,RdUd) presented as boxplots, indicating the median, as an white dot,  
and quartiles with whiskers reaching up to 1.5 times the interquartile range. Violin plot outlines 
indicate kernel probability density, i.e the width of the shaded area represents the proportion of 
the data located there. 
 



The analysis of the uncertainty generated by modeling components (two-factor 
ANOVA - methods vs. data partitioning) revealed that data partitioning groups (PdRd, 
RdPd, FullSet) accounted for most variation in model performance statistics (Table 1.2, 
Figure 1.4). F values for two-factor ANOVA are higher for Data sets (FullSet, 
UdRd,RdUd) than for Methods (GLM, SVM, Maxent, BRT and RBF) (Table 1.2). 
Tukey test showed significant difference (p < 0.001) between UdRd and the other two 
groups (RdUd and FullSet) for Sensibility, Type II Error and TSS (Table 1.3). For 
AUC, results showed significant differences among all three groups (Table 1.3). 

 

 Figure 1.4: Line Plot of evaluation metrics (Sensibility, Type II Error, TSS and AUC) grouped 
by datasets (FullSet, UdRd,RdUd) for all algorithms (GLM, SVM, Maxent, BRT and RBF) 
used in the modeling exercise. Square markers represent the mean value for the FullSet dataset, 
diamond markers represent the mean value for the UdRd set and circle markers represent the 
mean value for the RdUd set. 
 

Table 1.2: Two-factors factorial ANOVA results showing the effect of data partitioning 
(FullSet, RdPd, PdRd) and modeling methods (BRT, GLM, Maxent, RBF, SVM) on model 
performance metrics. 

Source of Variation 
Df Sum Sq Mean Sq F value Pr(>F) 

Sensibility$Algorithm 4 0.23 0.06 5.82 0.000129* 

Sensibility$Data group 2 1.69 0.84 86.10 < 0.000001* 

Sensibility$Algorithm*Sensibility$Data group 8 0.41 0.05 5.24 0.000002* 

Residuals 735 7.20 0.01 
  



TypeIIError$Algorithm 4 0.23 0.06 5.82 0.000129* 

TypeIIError$Data group 2 1.69 0.84 86.10 < 0.000001* 

TypeIIError$Algorithm*TypeIIError$Data group 8 0.41 0.05 5.25 0.000002* 

Residuals 735 7.20 0.01 
  

TSS$Algorithm 4 0.65 0.16 9.87 < 0.000001* 

TSS$Data group 2 3.42 17.09 104.36 < 0.000001* 

TSS$Algorithm:TSS$Data group 8 0.61 0.076 4.66 0.000014* 

Residuals 735 12.04 0.02 
  

AUC$Algorithm 4 0.60 0.15 21.24 < 0.000001* 

AUC$Data group 2 1.26 0.63 89.41 < 0.000001* 

AUC$Algorithm:AUC$Data group 8 0.20 0.025 3.52 0.000527* 

Residuals 735 5.16 0.01 
  

        

   * The mean is significant at the 0.001 level. 

Table 1.3: Tukey Honest Significant Differences (HSD) post-hoc test results showing the effect 
of data partitioning (FullSet, RdPd, PdRd) on model performance metrics. 

 

Mean  difference 
p 

 adjusted 

95% confidence interval 

 lower upper 

TSS$Data group     

UdRd-FullSet -0.16 0.00000* -0.19 -0.13 



RdUd-FullSet -0.03 0.001 -0.04 -0.020 

RdUd-UdRd 0.13 0.00000* 0.09 0.14 

Sensibility$Data group     

UdRd-FullSet -0.1 0.00* -0.12 -0.07 

RdUd-FullSet 0.01 0.55 -0.01 0.03 

RdUd-UdRd 0.10 0.00* 0.084 0.13 

TypeIIError$Data group     

UdRd-FullSet 0.10 0.00* 0.07 0.12 

RdUd-FullSet -0.01 0.55 -0.03 0.01 

RdUd-UdRd -0.10 0.00* -0.13 -0.08 

 
 

AUC$Data group     

UdRd-FullSet -0.10 0.00* -0.12 -0.08 

RdUd-FullSet -0.03 0.00* -0.07 -0.03 

RdUd-UdRd 0.07 0.00* 0.03 0.08 

  * The mean is significant at the 0.001 level. 

Overall, in the environmental space, variable importance and response curve function 
analyses indicated that there are more similarities between RdUd and FullSet models 
compared to UdRd models (Figure 1.5 and Figure 1.6). Bathymetry was the 
environmental predictor that most contributed for all three models, followed by 
variables related to sea surface temperature for FullSet (biogeo14: sea temperature of 
the coldest month) and RdUd (biogeo15: sea temperature of the hottest month), and by 
mean annual salinity (biogeo08) for UdRd (Figure 1.5). Regarding the response curve 
functions, FullSet and RdUd models showed consistent curves with low confidence 



intervals and similar results, with high suitability values in shallow waters, mean annual 
salinity between 30-36 PPSU and low annual variation in salinity (Figure 1.6). 
Additionally, both models indicated high suitability values in warmer waters around 
20°C in the coldest month and around 30°C in the hottest month (Figure 1.6). For the 
UdRd model, response curve functions presented inconsistent behavior, with curves 
showing high variability in the confidence intervals, meaning that the same value for a 
given environmental variable could indicate low or high suitability value in the 
consensus model (Figure 1.6). 

 

 

Figure 1.5: Contribution of the environmental variables to model performance measured by 
AUC. Values are the mean and standard of all 250 models generated for each occurrence dataset 
(FullSet, Rd, Pd). 

 

 

Figure 1.6: Response curves (black solid line) of the ensemble models generated for the three 
occurrence datasets (a1 to a5: FullSet model; b1 to b5: RdUd model; c1 to c5: UdRd). The gray 
shadow represents the confidence interval considering all 250 replicates for each of three 
occurrence datasets. 

 In the geographical space, comparison of Schoener's D revealed more similarity 
between RdUd and FullSet models than between each and UdRd models (Table 1.5). 



Schoener's D calculated for the overlap of predicted suitable areas between the models 
calibrated with Rd and FullSet occurrence datasets was higher than 0.9, which indicates 
that overlap in geographically projected models is high. 

 

  

Table 1.5: Similarity, in the geographic space, of the modeling outputs generated by the three-
occurrence dataset (FullSet, RdPd, PdRd). 

Models Schoener's D Spearman correlation 

RdPd x FullSet 0.91 0.98 

FullSet x PdRd 0.88 0.89 

RdPd x PdRd 0.87 0.84 

   

 In terms of the distribution of pixel value for the models within the EOO of 
Epinephelus itajara, using the 0.5 suitability threshold, the FullSet and RdUd models 
produced more similar estimates. The distribution of pixel values, as a function of the 
probability density, are higher in high adequability bins for FullSet and RdUd models 
reaching its peak in the density of distribution between 0.8 - 0.9 of adequability (Figure 
1.7 A and Figure 1.8 A). For the UdRd model, the higher density distribution of pixel 
values are clustered around the 0.5 - 0.6 adequability bins and start to decrease as the 
adequability increases. (Figure 1.9 A). Plotting these pixels in the geographic space, 
FullSet and RdUd had similar results. Both models predicted areas located all along the 
coast and with similarity to the known distribution of the species (Figure 1.7 B and 
Figure 1.8 B). The UdRd model presented large gaps between distribution and with only 
high values of suitability in the African portion of the distribution(Figure 1.9B). The 
total adequability values for the FullSet model was 3x106 km² , for RdUd 2.9x106  km² 
and for UdRd 2.3x106 km² . 



 

Figure 1.7: Distribution of probability density of pixel values across adequability bins for the 
FullSet model (A). B indicates the distribution of pixel values in the geographic space. Warmer 
red colors indicate high adequability values whereas yellowish colors indicate low adequability 
values. 



 

Figure 1.8: Distribution of probability density of pixel values across adequability bins for the 
RdUd model (A). B indicates the distribution of pixel values in the geographic space. Warmer 
red colors indicate high adequability values whereas yellowish colors indicate low adequability 
values. 

 



 

Fig 1.9: Distribution of probability density of pixel values across adequability bins for the UdRd 
model (A). B indicates the distribution of pixel values in the geographic space. Warmer red 
colors indicate high adequability values whereas yellowish colors indicate low adequability 
values. 

The evaluation of the temporal coverage of the occurrence datasets revealed low 
coverage and a strong bias in Ud records. Time span ratio (occurrence datasets / all 
records) computed for Ud (0.04) was very lower than for Rd (0.91). While the Rd 
dataset presented a temporal distribution covering all the time span analyzed, the Ud 
dataset presented only old records restricted to the years of 1963 and 1964 (Figure 2.0). 



 

Figure 2.0: Temporal coverage of the occurrence datasets of Epinephelus itajara showing the 
percentage of unreliable (Ud) and reliable (Rd) records along the years. 

The analysis of the environmental coverage of the occurrence datasets of Epinephelus 
itajara indicated that the environmental space occupied by the Ud records was not 
distinct that that occupied by Rd dataset. In the environmental space summarized by the 
first and second axes of the Principal Component Analysis (PC1 = 39.4% and PC2 = 
32.4%), developed with the five variables used in the models, Ud environmental space 
appeared as a subset of Rd (Figure 2.1). 

Figure 2.1: Environmental space of occurrence datasets of Epinephelus itajara summarized by 
the Principal Component Analysis composed by the five environmental variables used in the 



models. Red dots - unreliable records (Ud). Green dots - reliable records (Rd).  Blue dots - 
environmental conditions for the area accessible to the species, delimited by the ecoregions 
where the species is known to occur and adjacent, and sampled through 5000 randomly 
distributed points. Dots are enclosed by ellipses encompassing 95% of the data. 

After the multiple aspects evaluated, we demonstrated that: (i) models fitted with data 
filtered to reduce uncertainty and biases (RdUd) outperformed those fitted with 
unfiltered data (UdRd), especially in Sensitivity and Omission Error; (ii) RdUd and 
FullSet models were more similar and more robust than UdRd in all performance 
metrics, as well as in variable contribution, response curves behavior and geographic 
prediction of suitable areas; (iii) UdRd models showed inconsistent response curves;  
(iv) Ud dataset represented a subset of Rd in the environmental space; and (v) Ud 
dataset presented low temporal coverage with only old records. Therefore, following the 
proposed workflow guidelines, the best decision to make is discard the Ud records and 
use the RdUd model results. 

 

1.4.0 DISCUSSION 

 

 

 Our workflow, illustrated by Epinephelus itajara, yielded a framework to 

support decision about the use of unreliable records in ecological niche modeling, and 

shed light on how uncertainty in occurrence data can affect ENMs and overall measures 

of model accuracy.  

 Firstly, we demonstrated that more than one third (39.7%) of Epinephelus 

itajara occurrence records were assigned to very high uncertainty level. Similar finding 

was pointed in previous studies for mammal species in Australia (51.3%, Gueta & 

Carmel, 2016) and tree species at a global scale (48.5%, Jin & Yang, 2020). These 

results call the attention for the high proportion of low-quality records among data 

available from online occurrence repositories and the need for data cleaning in 

biodiversity studies (Maldonado et al., 2015; Gueta & Carmel, 2016; Zizka et al., 2019; 

Jin & Yang, 2020).  

 Subsequently, the rarefaction procedure applied to reduce spatial autocorrelation 

and sample bias filtered out a substantial portion (59.3%) of Epinephelus itajara 

occurrence records. Therefore, after these two filtering procedures, only approximately 

1% of the occurrence records remained. It is impressive that from a total of 14,027 

unique records, which could be considered a large dataset for a tropical species (Feeley 



& Silman, 2011; Feeley et al., 2015), we retained only a small number of records (n = 

138) to generate ENMs. An alternative could be applying environmental filters instead 

of geographic filtering to reduce spatial autocorrelation and sample bias. Although not 

widely used as geographic filtering, the use of environmental filters, derived from 

Principal Component Analysis axes, can be an advantageous rarefaction procedure. 

Castellanos et al. (2019) demonstrated that environmental filtering can return better 

performance in model evaluation statistics, show more biologically realistic predictions, 

and concomitantly retain more samples records than an equivalent geographic filter. 

  Following our workflow through the ecological niche modeling we were able to 

demonstrate that the PdRd model produced the worst result when compared to the rest 

of the models. According to the result of ANOVA and Tuckey SD, as well as of 

Schoener's D analysis, PdRd was the most dissimilar among the three models. This 

model also presented the biggest omission error. But regarding TSS, the PdRd model 

obtained a satisfactory evaluation. TSS is a statistic that ranges from -1 to 1 and positive 

values indicate models better than random results (Allouche et al., 2006). Models with 

TSS<0.4 are considered bad predictions, 0.4f TSS g0.8, useful and TSS>0.8 from good 

to excellent (Zhang et al., 2015). In this sense, according to our results about TSS, the 

PdRd model should be classified as a useful model. However, all the other aspects of 

the PdRd model outputs, like the distribution of its predicted suitable areas, sensitivity 

value, omission error and the shape of response curves for environmental variables, 

indicated bad model performance. It is still possible to observe the low capacity of the 

PdRd model to predict suitable areas within regions of known occurrence the EOO of 

the species. Regions such as Florida, southern Brazil and the mouth of the Amazon 

River, which are known as nursery and seasonal aggregation for the Goliath grouper 

(Referencia IUCN e os artigos no docword) were considered as partially suitable or not 

suitable at all. Therefore, our findings indicated that TSS alone is not enough to 

discriminate between good and bad models. This is in accordance with recent studies 

that  have criticized TSS, especially in the case of models based on presence‐only or 

presence‐background data, i.e. data with no information on locations where species do 

not occur (Jarnevich et al., 2017; Somodi et al., 2017; Leroy et al., 2018; Wunderlich et 

al., 2020). It was clear from our results that the use of occurrence records with some 

type of associated uncertainty can lead the model to have high omission error and low 

power to predict suitable areas in geographic space. This is line with the literature 

evidences demonstrating that the use of historic occurrence data at coarse resolution 



decrease the performance of the models when compared to models trained only with 

recent records at a finer resolution (Reside et al., 2008; 2011). Only when the inclusion 

of data with uncertainty or geographically biased do not cause a bias in the 

environmental space the decision of using such data do not decrease model 

performance. This is the case pointed by Kadmon et al. (2004), when using biased 

records for highways, obtained models with reduced accuracy when compared to 

models corrected for this bias or with models that use records without this problem, 

although the magnitude of the reduction in accuracy was not statistically significant. 

This is not the case in our study. Clearly, through the PCA it is possible to observe that 

the records with some uncertainties are a subset, in the environmental space, of the 

reliable records set. Consequently, model calibrated with uncertain data (PdRd) 

probably would not be able to predict suitable areas outside that restricted 

environmental space. 

 We can conclude then those uncertain records decrease the model9s 

performance, increasing their error of omission and decreasing their ability to project 

the models from the environmental space to the geographical space. We also emphasize 

that the exclusion of these uncertain and/or biased records would only be possible if the 

records with low uncertainty are enough to represent the entire environmental niche of 

the species. The decision about the quality of occurrence data to be used in ENMs is not 

trivial, but increasingly necessary. Evidently, there is a need to improve and expand the 

bases of occurrence records (Meyer 2016).  But until then, practical guidelines like our 

proposed framework can be useful to support decision about the use of unreliable 

records, which can improve the quality of ecological niche models. This become 

especially relevant when the ENMs predictions are used to guide conservation and 

management use decisions. 

 

  

 

  



Chapter 2: Adding habitat predictors to ecological niche 

models: an approach to improve model accuracy and 

suitability predictions  

 

 INTRODUCTION 

 

The knowledge about species geographical distribution is fundamental to 

address a wide array of ecological, biogeographical and evolutionary questions, and 

underlies nearly every aspect of managing biodiversity (Franklin, 2010). Information on 

where species occur is crucial to support biodiversity conservation and sustainable use 

decisions and to guide appropriate actions. Unfortunately, the knowledge about species 

geographical distribution is often incomplete (Villero et al., 2017; Sofaer et al.; 2019).  

Ecological niche models (ENMs) provide a spatialized approach to produce 

consistent and repeatable information about species distribution, which can be very 

useful to inform decisions (Sofaer et al., 2019). ENMs are correlative models that use a 

variety of algorithms to explore the relationship between species occurrences and 

environmental variables. Once this relationship is determined, the model is used to 

estimate the species' niche in the environmental space. The niche model is then 

projected as a probability surface into a geographic space, representing the potential 

distribution of the suitable area for the species (Peterson et al., 2011; Bellard et al., 

2012; Guisan et al., 2017).  

The choice of environmental variables is fundamental for this kind of correlative 

models, and despite its proven and important effect on the predictions, has received 

little attention (Syphard & Franklin, 2009; Austin & Van Niel, 2011; Tulloch et al., 

2016) and still remains a source of debate (Synes & Osborne, 2011; Bucklin et al 2015; 

Leitão & Santos, 2019). Due to the fact that climate is widely recognized as a major 

determinant of species' distributions (Brown & Gibson, 1983; Woodward, 1987), 

frequently environmental predictors for ENMs are selected from a set of climatic 

variables (Hageer et al., 2017). However, climate-only ENMs have been criticized and 

sometimes considered incomplete representations (Araujo & Peterson, 2012), because 

other factors may affect species distributions (Heikkinen et al., 2006; Chatfield et al., 

2010; Austin & Van Niel, 2011). In response to those criticisms, there have been 

attempts to include additional non-climate predictors in correlative ENMs (Austin & 



Van Niel, 2011), although there are comparatively few studies incorporating non-

climatic environmental variables (Hageer et al., 2017). Temperature predictors are the 

most widely used and also the most important variables in both, terrestrial and marine 

studies (Bradie & Leung, 2017; Bosch et al., 2018; Mammola et al., 2020; Melo-Merino 

et al., 2020). Nevertheless, the non-climatic variables, when used, were often selected as 

important in modelling the species distribution (Bradie & Leung, 2017; Mammola et al., 

2020), reinforcing the idea that including such predictors can improve ENMs 

predictions (Velazco et al., 2017). 

Ecological niche models generaly use abiotic variables such as temperature and 

precipitation as predictors for terrestrial environments, or ocean temperature and salinity 

as predictors for marine environments. Among non-climatic predictors, habitat variables 

are used very less often. Recent revisions (Bradie & Leung, 2017; Mammola et al., 

2020) revealed that, in the terrestrial realm, temperature predictors were used in more 

than 75% of the studies, while habitat predictors were included in less than a third of 

them. Similarly, in marine studies sea temperature predictors were used in 73,2% of the 

models, but habitat variables were included in only a few studies (3,4%) (Melo-Merino 

et al., 2020). 

In marine realm the presence or absence of coastal habitats, such as mangroves, 

marshes, seagrass and reefs, are essential for the distribution of species, considering that 

many fish and other organisms depend entirely or partially on these habitats (Feary, 

2013). Such coastal environments are of extreme biological importance, supporting a 

great wealth of species (McHugh, 1976; Booth, 2018). Estuaries are environments of 

transition between continental waters and ocean waters; therefore, they have very 

specific physicochemical characteristics. In a simplistic way, the habitats that compose 

the estuaries are mangroves (in tropical regions), saltmarshes (in temperate regions) and 

even seagrass. Mangroves are home to a great diversity of flora and fauna (Macintosh & 

Ashton, 2002). Bacteria that reside in mangroves are an important agent for chemical 

control as in the control of the nitrogen cycle and in the decomposition of sulfates 

(Sherman et al., 1998). The aerial roots of mangroves are home to a diversity of diatoms 

and unicellular algae, which are important for maintaining high levels of the food chain 

(Robertson & Blaber, 1992). From the group of animals, mangroves support permanent 

or temporary residents. Many of the fish found in mangroves are juveniles, suggesting 

that this habitat serves as a nursery (Macintosh & Ashton 2002). In addition to being 

used as a nursery, fish use this habitat for food and protection (Sasekumar et al., 1992). 



Mollusks and crustaceans are another group quite abundant in mangroves, having an 

important position in the trophic web and nutrient cycling (Robertson, 1986; Smith, 

1987;, Slim et al., 1997). 

Seagrasses represent one of the richest and most important coastal habitats in the 

ocean and are a source of food for megaherbivores such as green turtles, dugongs and 

manatees (Orth, 2011). Among the ecosystem services, we can mention the high 

primary productivity, filtration of nutrients and contaminants, filtration of sediments 

and production and export of organic components (Green and Short, 2004 . This 

environment also causes the damping of the waves, which allows the formation of 

nurseries for several species of fish, including species with high commercial value 

(Beck et al., 2001; Heck et al., 2003). Furthermore, the proximity of this environment to 

other habitats such as salt marshes, mangroves and coral reefs facilitates the trophic 

transfer and cross-use of these habitats by fish and vertebrates (Beck et al., 2001). This 

provides energy subsidies that are essential to maintaining an abundance of reef fish 

(Valentine & Heck, 2005). 

Known as the rain forest of the oceans, coral reefs are home to a great diversity 

of marine species (Talbot, 1994; Beger, 2003; Hughes, 2002). Estimates of their 

diversity indicate between 600,000 and 9 million species that are reefs (Knowlton, 

2008). In a simplified way, the dynamics of coral reefs, consists of coralline algae 

helping to cement large blocks of coral to each other making them form even larger 

blocks. Fish, sea urchins and other herbivores forage algae or seaweeds, making it 

possible to build new corals on the reef. In this way, coral reefs protect other animals 

from wave dynamics and / or predators and these animals help reefs to grow and 

maintain health (Maragos et al., 1996). In addition to this relationship that fish and other 

marine organisms have with coral reefs, these habitats are used to recruit new larvae 

that are often brought in from distant places, thus also serving as a nursery (Knowlton, 

2008; Maragos; 1996). 

Additionally, Robinson (2011) points out that for marine species, a static 

climatic perspective alone is not enough to build ecological niche models for these 

species. Ontogenetic changes, for example, are an important physiological trait that 

limits the distribution of marine species depending on their stage of life. In fact, this 

change in habitat use and environmental preference / tolerance is very common in 

marine species (Dahlgren & Eggleston, 2000; Wilson et al., 2008). The size of the 

geographic distribution for some species of pelagic fish varies according to the stage of 



life, where larvae and juveniles have a smaller distribution and adults a wider 

distribution (Mullon et al., 2000). The degree of habitat specialization can increase or 

decrease with ontogeny (Beck, 1995; Halpern et al., 2005) and it is common for reef 

fish species to use habitats far from reefs (mangroves, seagrass and macroalgae) as 

nurseries (Dahlgren & Eggleston, 2000). Another feature, but this time behavioral that 

can limit the geographic distribution are the seasonal aggregations. The aggregations are 

for food acquisition, avoiding predation and mating (Ritz, 1994) and as in many 

ecological niche models it is assumed that the species - environment relationship is 

stationary and linear (Austin, 2002; Fortin et al., 2005) such behaviors that vary in time 

and space in the ocean are not taken into account. 

Although sea temperature represents the most widely used predictor in 

ecological niche models for marine species (Melo-Merino, 2020), some studies have 

employed proxies to describe habitats used by species. Abecasis et al. (2014) used 

variables that describe the distance to certain substrates in addition to variables 

originating from bathymetry (slope, aspect and curvature) to build ecological niche 

models for bentonic and demersal species. Pace et al. (2018) used depth, slope and 

Euclidean distance from the coastline when modeling the distribution of social groups 

of Sperm Whales with the premise that these variables are a proxy for environmental 

characteristics that affect the distribution of these whales and their prey. Alt et al. (2019) 

in a study with zoonotic marine parasites compared ecological niche models built only 

with environmental variables with models including environmental variables and a 

variable that is the distance to a nearest grid cell containing at least one definitive record 

of host instance. The models that took the host into consideration had their performance 

improved, either by the Area Under the ROC Curve (AUC), or by the evaluation of the 

spatial predictions generated by the models. 

The use of proxies or distance variables for types of substrates or host seem 

promising but they do not take into account that the presence of these habitats and biotic 

interactions are not stationary. Estuarine habitats, for example, follow the level of the 

sea (Kennedy, 1990), therefore assuming that the relative distance from these habitats is 

stationary is dangerous, especially for vulnerable species that are dependent on habitats 

for various biological functions. 

Here, we assessed the extent to which habitat variables, combining with climate 

and salinity, may increase the performance of ENMs for coastal species. We 

hypothesised that models calibrated with both climate/salinity and habitat variables will 



have greater performance compared with models that incorporate only climate/salinity 

or habitat predictors. To test this hypothesis, we selected a particularly valuable model 

species, Epinephelus itajara, due to its dependence on different types of coastal 

habitats. 

The Goliath grouper, Epinephelus itajara, is the largest grouper in the Atlantic, 

with historical distribution in Florida, in the south of the United States, along the Gulf 

of Mexico and the Caribbean Sea and along South America to Santa Catarina, in Brazil 

and in the east along West Africa, from Senegal to Angola. Being able to reach 2 meters 

in length and 400 kilograms, it is considered a fish associated with coral reefs and rocky 

shores, artificial reefs and oil platforms. Mangroves are the main habitat for juveniles, 

although there are records of juveniles living in seagrass, puddles and shallow rocky 

areas. Usually, E. itajara juveniles that reach approximately one meter in size, go to 

offshore regions like coral reefs. Its main form of reproduction is through seasonal 

aggregations where there are a large number of specimens in the aggregation sites, 

making it a species that is very popular for fishing. It recently went from Critically 

Endangered to Vulnerable by the IUCN Red List of Threatened Species due to species 

conservation efforts (Bertoncini et al., 2018). Despite this, fishing for this species is 

usually common and there is evidence of genetic population structure due to population 

decrease. There has been no record of Goliath grouper in Africa for at least nine years. 

To account for the species dependence on different types of habitats, we proposed a 

modeling approach in which variables describing the relative distance of suitable areas 

for some types of coastal habitats are used as predictors, and comparative analysis are 

performed between models with and without habitat variables. When considering the 

distance from the suitable area for these habitats instead from the habitat itself, we seek 

to mitigate the effect of stationarity. 

In addittion, as E. itajara is an iconic threatened fish species (Craig et al., 2009; 

Bertoncini et al., 2018) and coral reefs, rocky shores and estuaries are among the most 

impacted marine habitats (Halpern, 2008), we assessed: i) the exposure of Goliath 

grouper distribution to anthropogenic stressors (fishing, ocean pollution and population 

pressure), and ii) the level of protection coverage under the current Marine Protected 

Areas network. 

 

2.0 MATERIALS AND METHODS 



2.1 Occurrence data 

Our occurrence records for Epinephelus itajara are from online database (GBIF, 

Fishbase, OBIS, SpeciesLink, Brazilian Biodiversity Information System), literature 

data (Artero et al., 2015; Creed et al., 2007 ; Damasceno et al., 2015; Tzadik et al., 

2017; Zapelini et al., 2017) and data provided by fish and grouper specialists (see 

Chapter 1, section 2.1). In Chapter 1 we showed that E. itajra records with some kind of 

uncertainty increase the omission error, thereby decreasing the models predictive 

ability. Therefore, records classified with some uncertainty were excluded from our 

analysis.  

Spatial autocorrelation may increase the uncertainties of niche models 

(F.Dormann et al., 2007) and some methods have been tested to mitigate these problems 

but with limited efficiency in presence-only models (El-Gabbas & Dormann, 2018a; 

2018b; F. Dormann et al., 2007). As suggested in Chapter 1, to minimize sample biases 

and spatial autocorrelation, as well as retain more occurrence records, we have opted for 

spatial rarefaction that takes into account the climatic heterogeneity of the calibration 

area, through SDMToolBox 2.4 (Brown, 2014). Specifically, the tool uses the first three 

principal components of the entire group of environmental variables to calculate climate 

heterogeneity. At the end of this process we obtained 92 unique and rarefied occurrence 

records suitable for modeling (Figure 2.1). 

 

 



 

Figure 2.1: Spatial representation of the marine ecoregions (in ligth yellow) and the 92 presence 
records (green dots) selected for ecological niche modeling. 

 

2.2 Models calibration area and predictors 

Considering that the species occurs in shallow and coastal waters, the calibration 

area was based on the World Marine Ecoregions (SPALDING et al., 2007). We include 

only ecoregions in which species was present, plus those ecoregions immediately 

adjacent (see Appendix 1, Figure S1, Table S1), as some model evaluation statistics 

tend to increase when the model calibration area also increases (Barve et al., 2011) 

(Figure 2.1). 

The selection of environmental variables was based on three main aspects: 

biological relevance to influence marine fish (Sandman et al., 2013; Bradie & Leung, 

2016; Goodyear et al., 2017) and E. itajara distribution (Gilmore et al., 1978; Eklund & 

Schull, 2001; Frias-Torres, 2006; Koenig et al. 2007; Chapman et al. 2014; Shideler et 

al., 2015); reduction of collinearity of the variables of the original set; and greater 

contribution to the model. Twelve variables representing mean, amplitude, and limits of 

ocean surface temperature and ocean surface salinity, at a resolution of 5 arc-minutes 

(~10km), were downloaded from the BioOracle database (Assis et al., 2018). From the 

original set of environmental variables, we selected only those variables that contributed 



most to the models according the Jackknife method and, less correlated, through the 

Spearman correlation (see details in Appendix 5, Table S.4, Figure S.5). At the end of 

the process we selected predictors that represent the average values of minimum salinity 

records (Salinity.Lt.Min), average records that represent minimum and maximum 

temperature records (Temperature.Lt.Min and Temperature.Lt.Max, respectively) 

(Table 2.1). 

We created variables representing Euclidean distance from suitable areas for 

seagrass (Figure 2.2), mangrove (Figure 2.3), rocky reef (Figure 2.4), coral reef (Figure 

2.5) and for the sum of all habitats (Figure 2.6) that were incorporated as habitat 

predictors in the models. Detailed description of the procedures used to generate the 

habitat predictors are provided in Appendix 6. 

 

2.3 Ecological niche modeling 

To generate ecological niche models, we use five algorithms that together cover 

a considerable range of different widely used modeling techniques: Generalized Linear 

Model (GLM), Boosted Regression Tree (BRT), Maximum Entropy (Maxent), Support 

Vector Machine (SVM), and Radial Basis Function (RBF). Considering that distinct 

algorithms can produce different results (Thuiller 2004, Lawler et al. 2006, Pearson et 

al. 2006, Diniz-Filho 2009, Buisson et al. 2010), to reduce uncertainties we used an 

ensemble approach (Araújo & New, 2007; Qiao et al., 2015), which combines results 

from different algorithms into a single consensus model.  

Species-specific tuning of model settings has already proved to be efficient for 

improving the results of ecological niche models (Anderson and Gonzalez, 2011). 

Better parameters produce model outputs with low omission and commission errors 

(Pearson et al., 2006; Warren and Seifert, 2014). Regardless of the modelling algorithm, 

data partitioning and pseudo–absences strategies affect output and performance of 

models (Morgane Barbet-Massin et al., 2012; Radosavljevic & Anderson, 2014; Iturbide 

et al., 2015; Roberts et al., 2017). Guided to a sensitivity analysis conducted to define 

better parameterization for data partitioning and pseudo–absences (see details in 

Appendix 7), we used subsampling partitioning method with 90% of occurrence records 

as training and the 10% as test data, and a 1:1 pseudo-absence to presence ratio (92 

pseudo-absences: 92 presence) (see Appendix 7, Table S6). 



We created four sets of ecological niche models with different combinations of 

environmental (climate and salinity) and habitat (distance to mangrove, distance to 

seagrass, distance to rocky reef, distance to coral reef) variables: (i) a model with only 

environmental variables (hereafter EnvOnly), (ii) a model with environmental variables 

plus four separate habitat variables (hereafter EnvHabs), (iii) a model with 

environmental variables and the sum of all four habitats (hereafter EnvSumHabs), and 

(iv) a model with only habitats (hereafter HabOnly). All models followed the same 

parameterization described in the previous paragraphs. We also tested for correlation 

between environmental and habitat variables and between habitat variables through a 

Spearman correlation matrix. We exclude the most correlated variables that were least 

important for models. We evaluated variables importance through getVarImp function 

in the SDM package (Naimi and Araújo, 2016) that uses the Area Under the ROC 

Curve (AUC) value as the basis for indicating which variable is the most important. The 

variables retained for each model are listed in Table 2.1. 

 

Table 2.1: Variables used to generate each ecological niche model. Salinity.Lt.min = Average 
minimum salinity records, Temperature Lt.max = Average maximum temperature records, 
Temperature.Lt.min = Average minimum temperature records, Dist.To.Mangrove = Euclidean 
distance variable for each presence cell predicted as suitable for the mangrove ENM, 
Dist.To.Rockyreef = Euclidean distance variable for each presence cell predicted as suitable for 
the Rockyreef ENM, Dist.To.Seagrass = Euclidean distance variable for each presence cell 
predicted as suitable for the Seagrass ENM, Dist.To.Any.Hab = variable that represents the 
distances to all habitats. 

 

 

 



 

Figure 2.2: Euclidean distance variable for Seagrass habitat. Blueish colors indicate shorter 
distances to the appropriate seagrass areas and reddish colors indicate greater distances to the 
appropriate seagrass areas. The shortest distance found is 0 km and the largest distance is 
4,973,768,000 km. 

 

Figure 2.3: Euclidean distance variable for the Mangrove habitat. Blueish colors indicate shorter 
distances to the appropriate areas of seagrass and reddish colors indicate greater distances to the 
appropriate areas of mangrove. The shortest distance found is 0 km and the largest distance is 
4,749,136,000 km. 



 

Figure 2.4: Euclidean distance variable for Rockyreef habitat. Blueish colors indicate shorter 
distances to the appropriate areas of rockyreef and reddish colors indicate greater distances to 
the appropriate areas of rockyreef. The shortest distance found is 0 km and the largest distance 
is 3,644,155,000 km. 

 

Figure 2.5: Euclidean distance variable for the Coralreef habitat. Blueish colors indicate shorter 
distances to the appropriate areas of coralreef and reddish colors indicate greater distances to the 
appropriate areas of coralreef. The shortest distance found is 0 km and the largest distance is 
5,370,715,500 km. 



 
Figure 2.6: Euclidean distance variable for the sum of all habitats. Blueish colors indicate 
shorter distances to the appropriate areas of all habitats and reddish colors indicate greater 
distances to the appropriate areas of all habitats. The shortest distance found is 0 km and the 
longest distance is 16,913,706,000 km. 

 

2.4. Models evaluation  

The evaluation of the different ecological niche models was based on 

Sensitivity, Specificity and True Skill Statistics (TSS) generated from the confusion 

matrix. Sensitivity is the detected presence ratio predicted as such, so it quantifies 

omission error (Type II Error). Specificity is the detected absence ratio predicted as 

such, so it quantifies commission error (Type I Error). The TSS is calculated by the 

formula Sensitivity + Specificity -1, that is, it takes into account errors of omission and 

commission (Allouche et al., 2006). Model performance and TSS values can be related 

as follows: poor (< 0.4), moderate (0.4 > 0.6), good (0.6 - 0.75), and very good (> 0.75) 

(Landis & Koch, 1977; Capinha et al., 2014). We built consensus ENMs using only 

good and very good models (TSS g 0.70), and applying TSS weighted average 

ensemble method (Araújo & New, 2007; Marmion et al., 2009). We used TSS because, 

although this metric has received some criticism as it is not immune to prevalence 

(Leroy, 2018) as previously thought (Allouche et al. 2006), it is still the most widely 

used metric to evaluate model9s performance. 



However, because we used presence-pseudo-absence models, we do not apply 

the TSS maximizing threshold (Liu, 2013), one of the most commonly used thresholds, 

to binarize our ensemble models. Instead, we use the Boyce Index (Boyce et al., 2002; 

Hirzel et al., 2006), a metric widely used lately to classify suitable areas (Cornellisen et 

al., 2018; Louppe, 2019; Hagar, 2020).  

The continuous environmental suitability is reclassified into i number of classes. 

For each bin, Predicted and Expected frequencies are calculated. The Predicted 

Frequency is calculated by dividing the number of species9 occurrence points in the bin 

i, as forecasted by the model, by the total number of species9 occurrence points. The 

Expected Frequency is calculated by dividing the number of grid cells in bin i by the 

total number of grid cells. A P/E ratio is then calculated for each bin and a Spearman 

rank correlation coefficient rho (1-tailed test) evaluates if the ratio significantly 

increases as suitability increases (p < 0.05). Models with good performance are visually 

identified by the P/E ratio curve graphic. The best P/E ratio curve is monotonically 

increasing (Boyce et al. 2002; Hirzel et al. 2006). Boyce9s index interprets 

environemental suitability through quartiles, accounting for a threshold of unsuitability 

and then marginal to optimal suitability (Hirzel et al., 2006). The different quartiles and 

divisions of suitability9s values will depend on the response curve of the model (Hirzel 

et al., 2006). The Boyce Index assesses how much of the model prediction matches the 

observed distribution of species occurrence through a predicted to expected ratio (P/E) 

curve. According to the shape of the P/E curve, P/E values <1 were categorized as Not 

Suitable (NS) and P/E values >1 were categorized as Suitable (S). The later included 

Moderately Suitable (MS) and Highly Suitable (HS) classes. 

 

2.5. Distribution, extent, exposure to antropogenic stressors and protection of 

suitable areas 

We analyzed the suitable areas predicted by the models in a pixel-by-pixel basis 

(Hu et al., 2010; Hu & Jiang, 2011) along ecoregions, under anthropogenic stressors and 

inside Marine Protected Areas (MPAs). Ecoregions were based on the World Marine 

Ecoregions (SPALDING et al., 2007) (see details in Appendix 1).  

We considered only anthropogenic stressors that are pointed as relevant threats 

for Epinephelus itajara by the IUCN assessments (Craig et al., 2009; Bertoncini et al., 

2018). Fishing pressure is seen as the main factor for the decline of goliath grouper 



population in the Atlantic (Bullock et al., 1992; Sadovy & Eklund,1999; Zapelini et al., 

2015) but other factors such as mangrove destruction (Sadovy & Eklund, 1999; Valiela 

et al., 2001; Koenig et al., 2007), mercury poisoning (Malinowski, 2019) and urban 

growth are also a threat (Craig et al., 2009; Bertoncini et al., 2018). Accordingly, from 

Halpern (2015) we obtained data about four normalized variables that summarize these 

impacts. They are: (i) artisanal fishing, (ii) demersal, non-destructive, lowbycatch, (iii) 

ocean pollution, and (iv) population pressure (details about the generation of these 

variables can be seen in Halpern, 2015, supplementary material). In addition to these 

four variables, we used map algebra to generate a cumulative impact variable by 

summing all the impact rasters. Illustrations of these stressors9 variables can be seen in 

the Appendix 8. 

Using zonal statistics, we calculated the extensions and percentages of the 

Moderately Suitable (MS) and Highly Suitable (HS) areas for the species in the current 

network of MPAs. Data on MPAs (IUCN categories I-VI) were obtained from the 

Worldwide Database on Protected Areas (WDPA, http://protectedplanet.net).  

Clipping procedures, spatial overlap, map algebra, zonal statistics and area 

calculations were performed in ArcMap. To avoid distortions in area calculations the 

data were converted to the World Equidistant Cylindrical Projection. 

 

3.0 RESULTS 

3.1. Model performance 

The model generated with environmental variables (climate and salinity) in 

combination with distance variables for separate habitats (EnvHabs) reached the best 

performance (Sensitivity 0.904 ± 0.11, Specificity 0.836 ± 0.13, TSS 0.741 ± 0.15), 

followed by the model built only with distance variables for separate habitats 

(HabOnly) (Sensitivity 0.891 ± 0.11, Specificity 0.818 ± 0.14, TSS 0.710 ± 0.13). 

Models based only in environmental variables (EnvOnly) and models combining 

environmental with distance variables for all habitats (EnvSumHabs) had the worst 

performances (Table 2.2). 

 

Table 2.2: Evaluation of the different ecological niche models for the Goliath grouper. 



 

  

From the Boyce Index P/E Ratio curve for each model we can also discriminate 

between good and bad models (Figure 2.7). Good models should present increasing 

exponential curves and high P/E Ratio values (Hirzel et al, 2006). Boyce Index analysis 

pointed to EnvHabs and HabOnly models as the best models. In terms of curve shape, 

the EnvSumHabs, EnvHabs and HabOnly models showed increasing exponential 

curves, but only the last two presented high P/E Ratio (> 10). On the contrary, the 

EnvOnly model presented low P/E Ratio value and an exponential curve with a drop at 

its end.  

 

 

Figure 2.7: Boyce Index P/E Ratio curve for the four models:. (A) Env+SumHabs, (B) 
Env+Habs, (C) EnvOnly, (D) HabOnly. For all plots, the horizontal straight line is where the 



P/E ratio is equal to 1. The dashed lines are the limits for the classification between High 
Suitability (HS) and Moderate Suitable (MS), i.e., habitat suitability values before the first 
dashed line are Not Suitable (NS), values between the line are considered MS and values after 
the second line are considered HS. 

 

3.2 Calssification of suitable areas 

According to the Boyce Index analysis, the P/E curve crossed the threshold of 1 

at the suitability value of 0.48 for the EnvHabs model, 0.56 for HabOnly, 0.57 for 

EnvOnly, and 0.67 for EnvSumHabs. Pixels with suitability values ranging from 0 to 

these values were classified as Not Suitable (NS) areas and excluded from our analysis. 

Pixels classified as Moderately Suitable (MS) areas had suitability values between 0.48 

- 0.74 for EnvHabs, 0.56 - 0.69 for HabOnly, 0.57 - 0.71 for EnvOnly, and 0.67 - 0.75 

for EnvSumHabs model. Pixels with values higher than those mentioned above were 

classified as Highly Suitable (HS) areas (Figure 3.1).  

 

3.3 Distribution, extent, exposure to antropogenic stressors and protection of 

suitable areas 

The model that predicted the larger extent of suitable area for Epinephelus 

itajara was the EnvOnly model, totaling 5,8x106 km² (MS = 3,7x106 km², HS = 2,1x106 

km²) (Table 2.3). According to this model, suitable areas were not continuously 

distributed along the species9 historical geographic range, showing a large suitability 

gap in the African coast, with the Brazilian coast partially suitable and with no suitable 

area in the Caribbean Sea (Figure 2.8C). The Env+Habs model predicted a total of 

3,4x106 km² of suitable area (MS = 2,0x106 km², HS = 1,4x106 km²) (Table 2.3). The 

suitable areas according to this model were well distributed along the specie9s historical 

geographic range, with coastal regions generally showing a larger amount of HS areas 

and regions on the periphery of the species distribution or offshore showing a larger 

amount of MS areas (Figure 2.8B). The HabOnly model predicted a total of 3,1x106 km² 

of suitable areas (MS = 1,8x106- km², HS = 1,3x106 km²) (Table 2.3) and in geographic 

space, the model output showed good congruence with the known distribution for the 

species in Western Atlantic, covering the entire Brazilian coast, Caribbean Sea, and 

Gulf of Mexico (Figure 2.8D). The distribution of suitable areas in the African coast 

also showed good congruence with the known historical distribution of the species. The 



Env+SumHabs model predicted the smaller extent of suitable areas, totalizing 2,2x106 

km² (MS = 1,1x106 km², HS = 1,1x106 km²) (Table 2.3). The suitable areas were not 

continuously distributed along the species historical geographic range, with large gaps 

occurring on both sides of the Atlantic Ocean (Figure 2.8A). 

Figure 2.8: Environmental suitability for Epinephelus itajara predicted by the four ensemble 
models: (A) Env+SumHabs, (B) Env+Habs, (C) EnvOnly, (D) HabOnly. Dark blue colors 
represent High Suitability (HS) and and light blue colors represent Moderate Suitable (MS). 

 

In terms of human pressures, according to all models the suitable areas for 

Epinephelus itajara are under great exposure to all antropogenic stressors analyzed 

(artisanal fishing; demersal, non-destructive, lowbycatch fishing; ocean pollution and 

population pressure), showing similar values of impact. More than 95% of the pixels 

classified as suitable area in each model are under some type of human pressure (Table 

2.4). 

For all models, the results indicated that a low percentage (5,5 to 9,2%) of 

predicted suitable areas for Epinephelus itajara is under some kind of protection by the 

current MPAs network (Table 2.3). The model that predicted the higher amount (in km²) 



of suitable areas within some protection level was the EnvOnly model, followed in 

decreasing order by HabOnly, EnvHabs and EnvSumHabs (Table 2.3). In percentage, 

the higher percentage was associated to HabOnly model, followed by EnvSumHabs, 

EnvHabs and EnvOnly (Table 2.3). 

 

Table 2.3: Total of area predicted as suitable (S), highly suitable (HS) and moderately suitable 
(MS) for Epinephelus itajara and total area under Marine Protected Areas. 

 

Table 2.4: Total predicted area within some pixel of human pressure. 

 

 

4.0 DISCUSSION 

 Ecological niche models are frequently developed only with climate variables or 

climate and salinity variables for marine species, but does the addition of habitat 

predictors really improve model performance? Our results suggest that yes, habitat 

predictors in combination with climate have a strong influence on ENM accuracy and 

suitability predictions. Using Epinephelus itajara as a model species, we tested the 

hypothesis that models calibrated with both climate/salinity and habitat variables will 

have greater performance compared with models that incorporate only climate/salinity 

or habitat predictors. As we expected, the model that combined climate/salinity and 

habitat predictors for different habitats (EnvHabs) showed the best performance 

according all analysed metrics, Sensitivity, Specificity, TSS and Boyce Index. 



ENMs are adjusted with variables to indirectly represent the physiological limits 

of a species (Peterson et al., 2011). Temperature and salinity are relevant variables to 

limit the distribution of marine species and their use has been extensive in ENM 

(Basher, 2016; Bosch et al., 2018; Baez, 2019; Alt et al., 2019; Catucci, 2020; Melo-

Merino et al., 2020). Even in models calibrated with additional predictors, climate 

variables remain the more important predictors, suggesting that climate predictors have 

strong influence on ENM accuracy and predictions (Bucklin et al., 2015).  

 However, our results findings do not support this assumption proposed by 

Bucklin et al. (2015), and showed that models generated with only temperature/salinity 

variables (EnvOnly) are not enough to represent the niche of the target species. For the 

Goliath grouper, a species dependent on different types of coastal habitats (Craig, 

2015), ENMs calibrated with climate/salinity and habitat variables (EnvHabs) and with 

only variables that represent the ecological optimal of the habitats (HabOnly) obtained 

the smallest omission and commission errors and highest TSS values (Table 2.2) when 

compared to the other models. From the Boyce Index P/E Ratio curve all models 

combining climate/salinity and habitat predictors showed increasing exponential curves, 

a characteristic of good models, while EnvOnly model, calibrated with only 

climate/salinity variables, presented low P/E Ratio values and an exponential curve with 

a drop at its end, which are characteristics of poor models. Decays in the P/E Ratio 

curve can be explained by a systematic bias in the observations or caused by biotic or 

environmental conditions that are not taken into account in the models (Cornelissen, 

2019), however, we believe that this decay occurs because model does not differ from 

chance expectation or deviation from randomness (Hirzel, 2006) due to poor 

performance. 

The choice of variables is an important decision in the construction of ecological 

niche models (Peterson et al., 2011). Criticism has been made about the reliability of 

such models, especially its biological relevance (Sofaer, 2019). To overcome this 

problem, the prior selection of variables of biological relevance is desirable (Foucard, 

2019). There are studies that used variables as a proxy for habitats or biological 

interactions (e.g., vegetation cover, bottom type of marine substrate), obtaining 

satisfactory results (D. Space 2018 and review in Sofaer 2019) with models even better 

than those calibrated with only climatic variables (Alt et al., 2019). Ecological niche 

models can be used as a tool for biodiversity conservation (Guisan et al., 2013), but 

their results must be accurate so that the action to be taken is the most correct. The 



literature shows us that conservation works that account for biotic interaction (Fordham 

et al., 2013) or that use proxies for habitat (Abecasis, 2014) have obtained satisfactory 

results and are faithful to the distribution of the target species. 

Our results also pointed out that ecological niche models that include habitat 

variables (EnvHabs and HabOnly) are able to predict in more detail the biogeographic 

patterns and the historical distribution of the species. For both models the predicted HS 

areas were identified next to the coast, while MS areas were located far from the coast, 

which corroborates the literature that characterize Goliath grouper as a coastal species 

(Craig et al., 2009; Bertoncini et al., 2018). Additionally, for both models, there were 

large extents of suitable areas in part of the coasts of Brazil and Florida in the United 

States, mainly for the EnvHabs model. This can be explained because there is a high 

concentration of occurrence records in these two regions, which are famous for being 

nurseries and aggregation regions for mating, including Parque dos Meros in Brazil 

(Giglio, 2014) and Ten Thousand Islands (Lara, 2009; Tzadik, 2017). Nevertheless, 

both models had some peculiarities: the EnvHabs model presented some gaps in the 

distribution of suitable areas, especially for the coast between Venezuela and Brazil, 

Panama and Belize and a small extension of the American coast bathed by the Gulf of 

Mexico. For the HabOnly model, there was a gap in a larger portion of the American 

coast bordering the Gulf of Mexico and a breakdown in the distribution of suitable areas 

in southern Brazil. This gap between Brazil and Venezuela can be explained by the 

Orinoco - Amazonas plume which is a famous biogeographic barrier for marine animals 

(Briggs, 1974; Floeter, 2008). The gap between Panama and Belize can be explained by 

the low sampling of occurrence records, considering the results of the Boyce Index 

analysis. The region where there was a gap in the American portion of the Gulf of 

Mexico overlaps with the Mississippi Delta. This Delta has an important role as a 

biogeographic barrier (Brant & Orti, 2003; Pyron & Burbrink, 2009), which can also 

explain the gap presented by the HabOnly model, but in larger proportions. Likewise, 

the same pattern of gaps on the African coast can be explained by the occurrence of the 

mouth of several rivers. The gap in southern Brazil predicted by the HabOnly model 

occurred just below the Capricorn Tropic. This finding is in line with the limits of the 

distribution of suitable areas for our mangrove and seagrass habitat ENMs. Seagrass 

occurrence is reported to be low on the Brazilian coast due to low sampling or to 

absence of species due to unfavorable oceanographic aspects, while the highest 

concentration of seagrass beds is located in the Gulf of Mexico and the Caribbean Sea. 



For mangroves, it is known that the distribution of this ecosystem is confined to tropical 

and subtropical regions, with low temperatute in high latitudes being a limiting factor 

for the distribution of the species (Giri, 2010). The distance to rockyreef variable did 

not suffer this latitudinal effect as the entire shoreline of the calibration area was 

considered as habitat. It is noteworthy that both models correctly predicted the Amazon 

Delta as a suitable area, in line with the literature highlighting that the region functions 

as a nursery for the species (Lobato, 2015). One last difference we can report in relation 

to the distribution of the suitable areas predicted by the two models (EnvHabs and 

HabOnly) is that adding variables represening oceanographic aspects of temperature and 

salinity increased the model capacity to predict large areas of high suitability (HS) 

beyond the coast in certain regions, particularly Brazil and Florida. We do not consider 

that this expansion can be a Type I (Commission Error) error, since the models had high 

specificity (>0.8) (Table 2.2). Rather, this expansion can be a reflect of adding more 

information to the model, turning it more able to predict in greater detail the suitable 

areas for the species. 

Our results about exposure to anthropogenic stressors for suitable areas 

predicted by both best models (EnvHabs and HabOnly) showed us a worrying situation 

for the target species. Goliath grouper is a species that had the conservation status 

modified from Critically Endangered to Vulnerable, according to the latest IUCN 

assessment. This is mainly due to conservation actions and the prohibition of fishing 

(Sadovy & Eklund, 1999; Gerhardinger; 2009). Fishing has always been an activity 

with high impact on marine megafauna (Jackson et al., 2001) and with Goliath grouper 

is no different. The use of longline and pearfishing is reported as one of the main forms 

of hunting the species (Bullock et al., 1992; Sadovy & Eklund,1999; Zapelini et al., 

2015) and our results support these findings. For EnvHabs model, 99% of all suitable 

areas are exposed to artisanal or demersal fishing pressure. For the HabOnly model, 

96% and 97% of all suitable areas are under artisanal and demersal fishing pressure, 

respectively. Evidence shows that even with the prohibition of fishing, the activity is 

still carried out, reaching as many as 12 tons of the species in a decade in Brazil (Giglio, 

2014). In addition, Goliath grouper is a curious species in front of divers (Sadovy & 

Eklund, 1999) turning it even more susceptible to spearhunting fishers. Our results also 

showed that suitable areas are highly exposed to anthropogenic stresors of ocean 

pollution and human pressures (urban enginering, port activity, waste disposal) with at 

least 96% of these areas under impact. These two pressures can jeopardize the species 



through impacts on its feed and habitat resources. Epinephelus itajara commonly feeds 

on invertebrates and benthic fish with low movement capacity (Koenig & Coleman, 

2009; Tzadik et al., 2015; Malinowski et al., 2019) and such items on the species menu 

are a source of great concentration of mercury (Malinowski et al., 2019) making our 

target species susceptible to contamination through trophic biomagnification. Coastal 

habitats are globally susceptible to terrestrial and marine pressures (Halpern, 2008). 

Mangroves are an important habitat for the species, whose main function is is serving as 

nursery, protection and feeding place for juveniles (Frias-Torres, 2006; Koenig et al., 

2007), but they have been suffering from deforestation for a long time (Spalding et al., 

1997; Spiers, 1999, Murray et al., 2003, Giri et al., 2011) and what is left over is often 

in degraded conditions (UNEP, 2004; MAP, 2005). Other impacts such as climate 

change (Ward, 2016) and even hurricanes (Graham, 2009) have an expressive role and 

can change the number of individuals in the Goliath grouper populations. The same 

scenario of a degraded environment is repeated for seagrass. Population growth and 

water contamination are among the main factors for the deforestation of seagrass 

meadows (Kemp et al., 1983; Larkum & West, 1990; Peters et al., 1997), and seagrass 

from estuarine areas is more vulnerable to contaminants from anthropogenic sources 

than those from the coast (Green and Short, 2004). Although not used in our models, 

coral reefs are also an important habitat for the target species (Frias-Torres, 2006; 

Koenig et al., 2007), which unfortunately is also suffering from high anthropogenic 

impacts.  

Likewise, our results about protection level for suitable areas predicted by both 

best models (EnvHabs and HabOnly) raise concern about the conservation of the target 

species. Both models indicated that only a small extent of suitable areas (<10% of total 

suitable area) were within some MPA. The current MPA network seems to more 

effective at protecting HS than MS areas (Table 2.3), as most MPAs cover the coast 

more than non-coastal environments in the study area.  

To conclude, ecological niche models represent a very useful tool to understand 

species distribution patterns, as well as and the exposure of their areas suitable to 

anthropogenic stressors and the coverage under protection areas, and it is important to 

implement such a tool in conservation action plans. If the focus of the work is with one 

or a few species, we suggest caution in the construction of the models, as we prove that, 

depending on the case (especially if the species has a strong association with certain 

habitats or environments), climatic variables alone are not enough to represent all the 



niche of the species. Ecological niche modeling its not in its infancy, but there is an 

urgent need to report in detail its methodology regarding occurrence records, 

explanatory variables, model parameterization and evaluation statistics (Araújo et al., 

2019; Zurell et al., 2020). We also highlight that more care must be taken when 

choosing the predictors to calibrate the models, and suggest that including additional 

non-climate variables, particularly habitat predictors, should be recomended. Although 

this can be challenger in many cases due to data unavailability, time and/or resource 

limitations, or incomplete ecological knowledge about predictors (Bucklin et al., 2015; 

Fournier et al., 2017; Velazco et al., 2017), it  seems to be very promissing. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 3: Ecological niche models predict, in a scenario of 

future climate change, a shift to high latitudes for a 

vulnerable species of grouper. 

 

3.1 INTRODUCTION 

 It is increasingly clear that climate changes driven by human activities are part 

of our lives (Keller, 2007; IPCC, 2104; 2018) and this problem has received more 

acceptance and attention from the mainstream media and governments (Oreskes, 2004; 

Boykoff & Pearman, 2019). If greenhouse gas emissions continue to rise at the current 

rates, predictions indicate that global mean temperature can increase beyond 4oC above 

pre-industrial levels until the end of XXI century, with high impacts on human and 

natural systems (IPCC, 2104; 2018; Días et al., 2019). It is undeniable that 

anthropogenic activities have been causing changes in the Earth climate and, 

consequently, in its biota (Días et al., 2019). Temperature increases, especially beyond 

1.5ºC or more, a threshold predicted to be reached between 2030 and 2052, increase the 

risk associated with profound or irreversible changes, such as the loss of some 

ecosystems (IPCC, 2018).  

 The increase in temperature directly affects the precipitation, drainage and 

constituents of the hydrological cycle (Klige, 1990; Zestser and Loaiciga, 1993; 

Loaiciga et al., 1996). Floods, precarious conditions for capturing water and excess 

underground runoff are some of the problems that arise from an imbalance in these 

hydrological cycles on the planet Earth (Loaiciga et al., 1996; Milly et al., 2002). About 

6% of the influx of water into the oceans comes from groundwater (Zestser and 

Loaiciga, 1993) so an increase from these waters directly affects the volume of water in 

the seas. In addition to this increase caused by the greatest influx from the continent, the 

increase in temperature in the oceans causes the volume to also increase due to a 

thermal expansion of the waters, contributing even more to this increase in volume 

(Stevenson et al., 2002). 

 The oceans are responsible for absorbing more than 90% of the excess heat that 

remains trapped in the Earth's climate system from the 1970s to the present day, making 

them a key component of the planet's energy balance (Bindoff et al., 2013). There are 

observational evidence for changes in global ocean heat content (e.g. Barnett et al. 



2001, Reichert et al. 2002) and ocean temperature and salinity (e.g. Barnett et al., 2005; 

Palmer et al., 2009; Pierce et al., 2012; Gleckler et al., 2012; Bilbao et al., 2019; 

Tokarska et al., 2019; Silvy et al., 2020). Such changes derived from human greenhouse 

gas emissions have effects on several marine systems aspects like stratification, oxygen 

concentrations, pH, primary productivity, circulation (Hartmann et al., 2013; Rhein et 

al., 2013; Pinsky et al., 2020). Recent observations indicate that oceans have 

experienced rapid warming over the last decades, contributing to increases in rainfall, 

sea levels; to decreases in oxygen levels, ice and glaciers; and to destruction of coral 

reefs (Rhein et al. 2013; Chen et al., 2019). Estimates indicate that 20 to 50% of the 

Atlantic, Pacific and Indian basins may already be affected by climate change, with 

models predicting that this proportion may reach 40–65% in 2050 and 55–80% in 2080 

(Silvy et al., 2020). These changes can have catastrophic consequences for marine biota 

(Roessig, 2004; Boot, 2018).  

 Species can cope with climate change by shifting along one or several of three 

distinct, but not excludent axes (Bellard et al., 2012). In the spatial axis, species can 

move to regions where there are appropriate conditions to survive. In the temporal axis, 

species can change their rhythms and phenology. In the self axis, species can change life 

history traits in its physiology to cope with new climatic conditions. The latter response 

is more difficult to observe and with little documented evidence (Parmesan, 2000; 

Bellard et al., 2012). Evidence from the beginning of the century (~ 1910 - 1940) in 

marine environments showed that species contract or expand their geographic 

distribution due to the warming of the seas. Boreal fishes expanded their distributions to 

higher latitudes in the North Atlantic, while some cold-water fishes had their 

distribution contracted polewards (Drinkwater, 2006; Sundby & Nakken, 2008 Phillips 

and Pérez-Ramírez, 2018). This same pattern is repeated for climate changes in the 

modern period (1970 onwards). In a meta-analysis on the biological response of marine 

species to climate change, Poloczanska et al. (2013) reported that changes in 

geographical extension are already happening, especially in high-latitude regions, 

resulting in a reconfiguration of ecological communities, in ways consistent with 

theoretical expectations. Publications on changes in species distribution driven by 

anthropogenic warming are mostly focused on the eastern portion of the North Atlantic 

Ocean, and on temperate species (Poloczanska et al., 2013), but evidence with tropical 

reef fish is starting to appear (Feary, 2013). Climate change is already driving poleward 

range edges of marine species to expand at an average of 72 km/decade, which is 



approximately an order of magnitude faster than observed rates on land (Poloczanska et 

al., 2013). Existing records have been sufficient to document hundreds of species 

moving to higher latitudes (Poloczanska et al., 2013; 2016; Pinsky et al., 2020). A 

recent study using a physiological non-spatial approach and including future climate 

changes showed that marine species can be more vulnerable to temperature rise than 

terrestrial species (Pinsky et al., 2019). Marine species may be more affected by climate 

change as the ambient temperature controls their geographic distribution, the 

availability of nutrients and the availability of oxygen in the ocean. Climate change is 

already altering the occurrence of marine species worldwide, reorganizing what has 

historically been considered the native and usual distribution of species (Pinsky et al., 

2019; 2020). 

 Regions in Florida (USA), which experienced an increase in temperature, also 

experienced changes in their fish assemblage, with an increase in tropical or subtropical 

species that were not previously found (Fodrie et al., 2010). In southeastern Australia, 

Last et al. (2011) pointed out that 45 species of warm water fish colonized or at least 

increased their geographical distribution to colder regions, due to an increase in sea 

temperature and the strengthening of the Eastern Australian Current. In addition, at a 

2011 La Niña event in Western Australia, Wernberg et al. (2012) recorded a 20% 

increase in the number of tropical species in the fish community. The increase in 

temperature in South Africa also contributed to decrease the number of seasoned fish 

caught, with a consequent increase in the number of tropical fish caught (groupers and 

sea bream) (Lloyd et al., 2012). Scientific evidence from the past demonstrates that 

changes in the distribution of marine fish species following environmental changes 

often occurr, and can help to make some predictions of how future anthropogenic 

changes may affect the distribution of species. 

 As climate change represent one of the main global threat to biodiversity, being 

the most ubiquitous anthropogenic stressor (Días et al., 2019), assessing the species 

exposure and vulnerability to climate change become crucial. In the last decades, 

Ecological Niche Modeling (ENM) has become one of the most used approach to assess 

species exposure to climate change (Peterson et al., 2011; Russo et al., 2016; Araújo et 

al. 2019). Despite its limitations, mainly because it does not consider biotic interactions 

(Araújo & Luoto, 2007; Gaston & Fuller, 2009), the contribution of this tool to the 

understanding of climate change impacts on biodiversity is undeniable (Araújo et al., 

2011; 2019). These correlative models relate the current distribution of species to 



environmental variables, with the aid of algorithms, defining its climatic niche in 

environmental space, and thus projecting this niche model to geographic space and 

mapping the suitable areas for the species (Peterson et al., 2011; Bellard et al., 2012). 

This projection can be even transfered to past or future climate change scenarios 

(Peterson et al., 2011; Bellard et al., 2012). Although ENM applications in climate 

change are widespread for terrestrial organisms, studies on the vulnerability of 

biodiversity to climate change are particularly scarce for marine organisms (Robinson, 

2011; 2017; Melo-Merino et al., 2020). In the rank of application issues, literature 

reviews about ENM in marine realm positioned climate change in the fourth (Robinson 

et al., 2011), third (Robinson et al., 2017), and second position (Melo-Merino et al., 

2020). Although increasing, applications to evaluate impacts of climate change 

represent only 19% of the ENM studies for marine species (Melo-Merino et al., 2020). 

There is also a very clear geographical bias involving studies using ENM in marine 

realm, with most applications concerned the North Atlantic Ocean, often along the 

northeastern coast of the United States of America and the coast of Europe (Robinson et 

al., 2017; Melo-Merino et al., 2020).  

 For future projections, global predictions across hundreds to thousands of marine 

species indicated a general trend of range expansion and shift to higher latitudes 

(Cheung et al., 2009; Molinos et al., 2015). However, there is a certain divergence in 

these regards. In some recent and more restricted studies, for example, range 

contractions are predicted instead of expansions (e.g. Durante et al., 2017; Wabnitz et 

al., 2018; Zhang et al., 2019). In fact, for some temperate seaweeds, Juterbock (2013) 

found a possible displacement of areas suitable for higher latitudes in climate change 

scenarios, even leading to habitat loss at latitudes less than 45º. This same shift trend for 

higher latitudes is predicted for a species of shrimp in Antartida (Basher, 2016) and for 

the benthic macrofauna of the English Channel (Rombouts, 2012). Some tuna species - 

the temperate tunas (albacore, Atlantic bluefin, and southern bluefin) and the tropical 

bigeye tuna - are expected to shrink in the tropics and undergo a poleward shift 

(Erauskin-Extramiana, 2019). For Japanese whiting Sillago japonica Zhang et al. (2019) 

pointed to a shift to the north of their distribution, towards higher latitudes. However, in 

a literature review on the use of ecological niche models applied to seaweed invasions, 

Marcelino (2015) reported that several studies involving species in this group have 

expanded their distribution to lower latitudes (e.g. near Ecuador). For skipjack and 



yellowfin tunas, Erauskin-Extramiana (2019) have shown that they will be more 

abundant in tropical waters even with global warming.  

 Here, we evaluated the possible effects of future climate change on Epinephelus 

itajara, an iconic threatened species from tropical Atlantic (Craig et al., 2009; 

Bertoncini et al., 2018). Goliath grouper, as it is usually called, is the largest grouper in 

the Atlantic Ocean, which can exceed 200kg and 2m. Its historical distribution is 

thought to extend from the southern Brazil to Florida, in the Western Atlantic, and from 

Congo to Senegal, in the Eastern Atlantic Ocean. Juveniles of this species are found in 

estuarine environments such as puddles, mangroves and seagrass. When individuals 

reach a certain size, an ontogenetic shift occurs in the habitat use towards estuaries and 

natural and artificial coral reefs. Due to its curiosity and fearlessness in the face of 

divers, the Goliath grouper suffered a lot from overfishing. Until recently, the species 

was categorized as Critically Endangered by the IUCN Red List. In 2018 it was 

recategorized as Vulnerable due to conservation efforts, like fishing prohibitions in 

United States and Brazil. In the African coast there are few bonafide records of the 

species in the last decades (see Chapter 1). The Goliath grouper is considered a tropical 

species, living generally in temperatures above 14º C (Gilmore et al., 1978). Therefore, 

with a possible tropicalization of the temperate marine areas, would also be possible an 

expansion and shift of E. itajara geographic distribution towards higher latitudes. In 

addition, a climate change study from LGM to the present Minsky (2017) predicted an 

increase in the suitable area for the Goliath grouper following the past increase in global 

temperature in the Middle Holocene.  

 In the present study we investigated whether the same trend predicted under past 

global warming would be repeated in a future climate change scenario in 2100. We 

hypothesized that the species will be affected by global warming in a future climate 

change scenario through (i) an expansion and (ii) a distribution shift of suitable areas 

towards higher latitudes. To test our hypotheses, we applyied a correlative approach 

based on ecological niche modeling with the addition of habitat predictors, which was 

developed in the Chapter 2 and demonstrated to improve model accuracy and 

predictions. We also assessed the level of protection coverage of the future suitable 

areas predicted for 2100 and of the stable areas for E. itajara under the current Marine 

Protected Areas network. 

 



3.2 MATERIALS AND METHODS 

In the previous chapter, we demonstrated that the use of environmental variables 

that represent habitats used by the species can substantially improve the results of 

ecological niche modeling, with implications for biogeography and conservation. 

Therefore, following those results, in this chapter we used the EnvHabs model (see 

details in Chapter 2) to assess the exposure of suitable areas for Epinephelus itajara to 

the climate change projected for 2100. Considering that generation length of the species 

is 21.5 years (Bertoncini et al., 2018), we choose the year 2100 following the IUCN 

guidelines that sets a period of three generations for change analysis in risk assessments 

(IUCN, 2019).  

 

3.2.1 Environmental and habitat variables for the RCP 8.5 scenario 

We obtained the projections of the variables Salinity.Lt.min, 

Temperature.Lt.min for the year 2100, under the RCP 8.5 scenario, from the Bio-

ORACLE v2.0 database (Assis et al., 2017). These future layers were produced for 

2100 by averaging data from distinct AOGCMs provided by the CMIP 5. The 

representative concentration pathway RCP 8.5 is a "business as usual" scenario, which 

assumes high population growth, slow economic growth, resulting in high emissions of 

greenhouse gases and demand for energy, combined with few changes in climate 

change policies (reviewed by Moss et al., 2010). 

The distance variables for the habitats were created trhough the projection of the 

ecological niche models of the respective habitats for the future climate change 

scenario, using the same procedures detailed in Appendix 6. 

 

3.2.2 Ecological niche modeling 

To generate ENMs we used the five algorithms (GLM, BRT, Maxent, SVM, and 

RBF) and the same parameterizations applied in the Chapter 2 (see details in section 

2.2.3). We built consensus ENMs using only good and very good models (TSS g 0.70), 

and applying TSS weighted average ensemble method (see details in section 2.2.4). To 

provide a spatial estimate of the uncertainty, we used standard deviation of those 

outputs to create a uncertainty map. We also classify the suitability values of the 

ensemble model as Moderate Suitability (MS) and High Suitability (HS), using the 

suitability intervals generated by the Boyce Index (see details in section 2.2.4). 



 

3.2.3 Exposure and impacts of climate changes in the RCP 8.5 scenario for 2100 

The analysis of the exposure of suitable areas for Epinephelus itajara and 

impacts associated to future climate changes (RCP 8.5 scenario for 2100) was 

performed in a pixel-by-pixel basis (Hu et al. 2010, Hu & Jiang 2011). Following the 

methodology proposed by Thuiller et al. (2005) and using map algebra in ArcMap 10.5, 

we calculated the pixel loss in the model (pixels that are suitable in the present scenario, 

but are not suitable in the future), pixel gain (pixels that are not suitable in the present, 

but become suitable in the future), and stable pixels (pixel suitable in both time slices), 

for pixels classified as Highly Suitable (HS) and as Moderately Suitable (MS). Using 

zonal statistics, we calculated the extensions and percentages of the Moderately Suitable 

(MS) and Highly Suitable (HS) areas and the stable areas for the species in the future 

network of Marine Protected Areas. Data on MPAs (IUCN categories I-VI) were 

obtained from the Worldwide Database on Protected Areas (WDPA, 

http://protectedplanet.net). Clipping procedures, spatial overlap, map algebra, zonal 

statistics and area calculations were performed in ArcMap10.5. To avoid distortions in 

area calculations the data were converted to the World Equidistant Cylindrical 

Projection. 

 

3.3 RESULTS 

The results of the ecological niche modeling for the Goliath grouper in 2100 

indicated that suitable areas predicted for this future climate change scenario sum 9x106 

km², with 4x106 km² of highly suitable areas and 5x106 km² of moderately suitable 

areas. This represents a potential expansion of 164.7% compared to the current suitable 

areas, which totalize 3.4x106 km² (MS = 2.0x106 km², HS = 1.4x106 km²). If we 

consider only the pixel gain, i.e. pixels that were not suitable in the present, but become 

in the future, the area gain sums 8x106 km² (HS = 3.8x106 km², MS = 4.1x106 km²). The 

stable areas, i.e. pixels identified as suitable in the present and in the future, sum only 

1x106 km² (HS = 1.9x105 km², MS = 8.1x105 km²), representing 29.4% of the suitable 

areas in the present and 11.1% of the suitable areas in the future.  

The distribution of suitable areas in the future (Figures 3.2, 3.3) had a different 

pattern than the observed for the suitable areas in the present (Figure 3.1), described in 



the Chapter 2 (section 2.3.3 of the Results). In general, there were latitudinal shifts of 

the suitable areas towards the poles predicted for 2100 (Figure 3.2). Higher 

concentrations of suitable areas in the present are observed in the tropical regions, while 

in the future are observed in subtropical and temperate regions. Considering only HS 

pixels, the distribution of the future suitable areas is located mainly below the Tropic of 

Capricorn and above the Tropic of Cancer. When considering only MS pixels, the 

distribution of the future suitable areas extends along almost all the African and 

American coast, but with some gaps. The distribution of stable areas for HS pixels 

occurs mainly in the regions of Florida coast, the mouth of the Amazon River, and in 

the southeastern coast of Brazil (Figure 3.2). For MS pixels, the distribution of the 

stable areas extends along almost all the African coast, Gulf of Mexico and the 

Caribbean islands of Central America. 

The standard deviation map derived from our predictions showed that the 

uncertainties are generally low along the coastal zone and major part of the study area. 

Higher values are restricted to perpherical regions like north and south extreme limits or 

open water surrounding some islands further from the coast (Figure 3.3).  

Likewise in the present, with only 6.4% of suitable areas protected, the results of 

future ENM indicated that a low percentage of predicted suitable areas for Epinephelus 

itajara in 2100 is under some kind of protection by the current MPAs network. Only 

9.3% of the areas of HS is under some protection, while only 0.3% of the areas of MS is 

under protection. Considering only the stable areas, 19% of the HS pixels and 0.9% of 

the MS pixels is under some protection by the current MPAs network. Furthermore, the 

higher concentrations of the suitable areas in some protection predicted for 2100 are 

located in Tristan Gough and Azores Canaries Madeira ecoregions. 

 



 

Figure 3.1: Environmental suitability for Epinephelus itajara predicted by the ensemble model 
in the present. Dark blue = High Suitability (HS), Light blue = Moderate Suitability (MS). 

 

 

Figure 3.2: Environmental suitability for Epinephelus itajara predicted by the ensemble model 
in the future. Dark blue = High Suitability (HS), Light blue = Moderate Suitability (MS). 

 

 



 
Figure 3.3: Distribution of the stable areas for Epinephelus itajara. Green area represent stable 
areas for High Suitability (HS) pixels and yellow areas represent stable area for Moderate 
Suitability (MS) pixels. 

 
Figure 3.3: Plot of the continuous representation of the standard deviation for all models. Bluish 
light colors represent low deviation and reddish warm colors represent high deviation. 
 
 
 



3.4 DISCUSSION 

In this study we applied an ecological niche modeling approach, with the 

inclusion of habitat predictors, to test hypotheses about the effects of future climate 

change on the geographic distribution of Epinephelus itajara. The application of the 

EnvHabs niche model allowed to evaluate climate change impacts for the target species 

taking into account the synergistic effect of changes in temperature and salinity, 

together with the change that its habitats will undergo in the future scenario.  

As we expected, the predicted suitable areas for the Goliath grouper in 2100 

showed a potential expansion (1.5-fold) compared to the current distribution. This result 

agrees with studies that indicated a general trend of range expansion for marine species 

in future climate change scenarios (Cheung et al., 2009; Molinos et al., 2015; Morley et 

al., 2018), and disagree with recent studies that predicted range contractions instead of 

expansions (Durante et al., 2017; Wabnitz et al., 2018; Zhang et al., 2019). Likewise, 

according to our expectations, the distribution of suitable areas for E. itajara predicted 

for 2100 presented a poleward latitudinal shift, with higher concentrations of suitable 

areas located in subtropical and temperate regions, instead of in the tropical regions as 

observed in the current distribution. This poleward shift followed the general trend 

reported in previous studies predicting changes in marine species distribution (Cheung 

et al., 2009; Rombouts, 2012; Hazen et al., 2013; Juterbock, 2013; Robinson et al., 

2015; Molinos et al., 2015; Basher, 2016; Kleisner et al., 2017; Morley et al., 2018; 

Zhang et al., 2019), and disagree with some studies that predicted shifts toward lower 

latitudes (e.g. Marcelino, 2015; Erauskin-Extramiana, 2019). 

 Prediction uncertainty showed to be low along the study area, except in extreme 

perpherical regions like north and south limits or open waters around some islands 

further from the coast. Therefore, the higher concentrations of the suitable areas 

predicted for 2100 in such regions, like Tristan Gough and Azores Canaries Madeira 

ecoregions (Figure 3.1), should be considered with care. ENM hindcast and forescast 

are always associated with some uncertainties. Despite the long-standing and important 

role of ENMs to assess the impact of past and future global change on biodiversity, 

these correlative approaches present some shortcomings (Araújo & Guisan, 2006; 

Bellard et al. 2012; Peterson et al., 2018). One such problem is limited transferability of 

parameterised models to other times beyond the range of data used for model fitting, i.e. 

model extrapolation, that bring uncertainties to outputs. Modelling methods and 



parameterization, together with climate global circulation models and scenarios, are 

considered the main influences to transferability and uncertainties in ENMs (Diniz-

Filho et al., 2009; Buisson et al. 2010; Loyola et al., 2012; Thuiller et al., 2019). 

Ensemble modelling and consensus methods have been proposed as an alternative to 

reduce uncertainty across individual ENM methods and climate models (Araújo & New, 

2007; Diniz-Filho et al., 2009; Marmion et al., 2009; Buisson et al. 2010; Thuiller et al., 

2019). In addittion, the inclusion of additional non-climate predictors can help improve 

the performance of ENMs and, in turn, their transferability (Regos et al., 2019). 

Therefore, we expect to have minimized uncertainties associated to our predictions 

through the application of a modelling approach envolving ensemble forecasting with 

consensus of different climate models and ENM methods, and of the EnvHabs niche 

model, optimized with a set of additional habitat predictors (see Chapter 2).  

 According to our predictions for expansion and shift in suitable areas for the 

Goliath grouper along with the possible tropicalization of the temperate marine areas, 

we could expect that this tropical species can expand its geographic distribution to 

larger latitudes, even without knowledge about the upper limit of its thermotolerance. 

However, even with new suitable areas available in the future, like predicted here for 

Epinephelus itajara, for a species to advance poleward in response to climate change, 

populations must colonize such new regions. A successful colonization requires a 

species to disperse to a new location and maintain positive growth through either self-

persistence or ongoing immigration (Bridle & Vines 2007). To undergo range 

expansion, species must first arrive a new region, which can depend on movement 

performance, derived from larval dispersal and/or adult mobility capacity. 

 In general, larvae represent the life stage with the high dispersal potential (Feary, 

2013) and, although there is a high level of larval retention in the area where they were 

settled (40 - 60%) (Thorrold et al, 2001; Almany et al., 2007a; Harrison et al., 2012), 

the corollary effect of this is that about 40 - 60% of the larvae will be exported away to 

other coral reefs or estuarine regions (Leis et al. 2011) and ocean currents play an 

important role in this event (Leis et al 2011). However, with climate change driven by 

anthropogenic actions, there may be a weakening of these currents (Rahmstorf 2006, 

Liu et al 2017). On the other hand, for many large marine fishes, adult mobility serves 

as a better predictor of the rate of range expansion than larval dispersal strategy (Sunday 

et al. 2015).  



 But even when species can arrive in a new region, it does not guarantee 

establishment and subsequent positive population growth (Burgess et al. 2012, 

Sadowski et al. 2018). The success of a tropical species in colonizing a new 

environment (usually subtropical or temperate) depends on extrinsic factors (e.g. ocean 

currents) and intrinsic factors (e.g. environmental and physiological restrictions, 

abundance and latitudinal distribution, life history traits associated with nomadism and 

association with habitats) (Feary, 2013). 

 As fish need temperature for their bioenergetic processes (Fry, 1967; Hazel & 

Prosser, 1974; Houde, 1989; Clarke & Johnston, 1999), the thermal limits for minimum 

environmental temperature will dictate the success of tropical species in colonizing 

subtropical or temperate environments (Attrill & Power, 2002; Dulvy et al. 2008; 

Poertner & Farrell, 2008). Considering that non-tropical environments vary greatly in 

temperature throughout the year, the optimal thermal for key physiological processes 

will only be possible at specific times of the year (e.g. hot summer months) (Feary, 

2013). 

 The success in dispersing to non-tropical environments can be associated to 

species biogeographic traits. There is a positive relationship between population density 

and geographic extent (Lawton, 1999; Roughgarden, 2009) and between vagrantism and 

latitudinal extent (Feary, 2013). However, the success of a tropical fish species 

migrating to a subtropical or temperate region also depends on how the populations are 

distributed, because even species with high density and wide range, but with a truncated 

or sparsely geographic distribution, may not be able to maintain viable populations 

since the source population will be very distant or will not be enough to maintain its 

sink population (Sorte et al., 2010).  

 Traits of life history also affect the success in dispersing to non-tropical 

environments. There is a positive relationship between fish body size and the number of 

gametes produced (Weatherly, 1972; Thresher, 1984), which can substantially increase 

the likelihood of larval dispersion over long distances (Law, 1993; Munday & Jones, 

1998). In fact, Feary (2013) demonstrated that fish with larger body size are more likely 

to have assemblages of expatriates compared to fish of smaller size in a possible climate 

change environment. In addition, life traits as the type of parental care for offspring 

(Thresher 1984; Brogan 1994; Lo-Yat et al., 2006), swimming ability in the larval phase 

(Stobutzki & Bellwood, 1994; 1997; Leis et al., 1996; Leis & Carson-Ewart 1997, 2003; 

Fisher, 2005), body size in the settlement phase (Sponaugle & Grorud-Covert, 2006; 



Sponaugle et al., 2011), and dependence on specific habitats to settle (Feary 2013), are 

other factors that can facilitate or not the dispersion of these species. Indeed, Feary 

(2013) demonstrated that, in a scenario of climate changes, low parental care, high 

swimming capacity, larger body size in the settlement phase and larvae, and habitat 

generalist larvae are the main traits associated to the success in colonizing non-tropical 

environments.  

 Along with suitable environmental conditions, to persist in a new region species 

need to find food resources. Accordingly, species that successfully colonize new 

habitats tend to be ecological generalists that have flexibility in habitat and diet, such as 

omnivores as opposed to herbivores or predators (Sunday et al., 2015).  

 Although with the potential to expand the range polewards, Epinephelus itajara 

might find challenges to migrate into new areas due to some life history and 

physiological traits. The Goliath grouper is a site specific species with low activity 

(Craig, 2015), predator food habits (Artero et al., 2015a), and reproduction through 

seasonal aggregations, which involve many individuals migrating to specific sites to 

sprawn (Koenig et al., 2016). Large juveniles and adults can have difficulties to 

successfully migrate to novel areas due to their strong site fidelity and low activity 

(Koenig et al., 2007; Bertoncini et al., 2018). Young juveniles are known to strongly 

depend on mangroves, and in a minor proportion on coral reefs and rocky tide pools 

(Koenig et al., 2007; Lobato et al., 2016), therefore, juveniles can face some challenges 

to occupy novel areas, especially if they are unable to settle in these habitats. 

Furthermore, to sustain viable populations on these novel areas the Goliath grouper will 

strongly depend on tropical source populations, since the individuals that will live in 

these novel regions or at the border of the distribuition will be spending much of the 

energetic reserve to deal with this novel environment (Feary et al., 2013; Phillips and 

Pérez-Ramírez, 2018). It is worth mentioning that much of the Brazilian northeastern 

coastal region is predicted to be no longer suitable in 2100. This is particularly worrying 

because this gap in the distribution of suitable areas can interfere with the genetic flow 

between the populations of Goliath grouper, which has already been suffering from 

population genetic structuring (Craig et al., 2009; Damasceno et al., 2015). 

 More important than the distribution of suitable areas in the future is the 

distribution of environmentally stable areas. Climatic stable areas are important to 

providing suitable habitats over time (Carnaval et al., 2009) and maintaing genetic 

diversity (Assis et al., 2014; Assis et al., 2016; Carvalho et al., 2017), serving as refuges 



and increasing the possibility of long-term persistence of species. Stable areas favor 

evolutionary process (Werneck et al., 2012), being regions associated with high 

endemism, species diversity and intraspecific diversity (Graham et al., 2006; Hewitt, 

2004; Werneck et al., 2012). Our results indicated that part of the mouth of the Amazon 

River, part of the southern region and the state of Florida can represent stable regions, 

when considering only the HS pixels. Currently these regions are extremely important 

because they are known to harbor seasonal aggregations and nurseries for the species 

(Giglio et al., 2014b; Zapelini et al., 2017). These HS stable areas could serve as a 

refuge for the species in a climate change scenario. 

 Regarding the temporal dynamics, as expected, from the present to the future we 

found a similar pattern of suitable areas expansion predicted under past global warming, 

although the trend for potential range expansion in 2100 (~165%) had been higher than 

that from LGM to Middle Holocene (~60%) (Minsky, 2017). However, past and future 

dynamics present some important differences. The suitable areas expansion predicted in 

the past global warming did not show distributional changes in latitude, a distinct 

situation from that predicted for the future with a poleward shift. From LGM to the 

present, the stable areas (i.e., areas that remain suitable along time) represented more 

than 80% of the current suitable areas (Minsky, 2017). Differently from the past, the 

distribution of stable areas predicted in the future corresponded to less than 30% of the 

current suitable areas. Therefore, the restricted distribution of stable areas in 2100 raises 

a concern for the future persistence of E. itajara. 

In the same direction, the current MPAs network seems to offer a limited 

coverage for the target species both in the present and in the future, with less than 10% 

of the suitable areas and to less than 20% of the stable areas under some level of 

protection. Considering that the higher concentrations of the suitable areas under MPAs 

are located in Tristan Gough and Azores Canaries Madeira ecoregions, where 

predictions have higher uncertainty, the protected status of potential habitats for the 

Goliath grouper in the future can be even worse. 

 In summary, our findings suggest that future climate change may have a positive 

impact on the potential range extent of Epinephelus itajara, promoting a gain of suitable 

areas for this species. This could reduce the species' vulnerability to future climate 

changes. However, the distribution of future suitable areas will undergo a poleward 

shift. In a possible negative outcome of such change, areas currently suitable and 

occupied by the Goliath grouper could become unsuitable and suffer local extirpations 



in the future. Besides, new suitable areas predicted for the future can be prevent to be 

occupied by E. itajara due to dispersion and biotic (e.g. prey, competidors, pathogens) 

restrictions. It is important to consider both biotic and abiotic drivers in facilitating or 

limiting range expansions, though the relative importance of these processes remains 

poorly understood (Louthan et al. 2015). Studies on the ecology and behavior of Goliath 

grouper larvae are necessary to better predict the success of colonizing new regions. 

Studies on Goliath grouper thermotolerance are needed to better assess the climate 

change exposure. Evidences on a congeneric species demonstrated that spawning 

individuals present narrow thermal tolerance range, indicating that this life stage may be 

a bottleneck constraining response to climate change (Asch & Erisman, 2018). Finally, 

we emphasize the need to expand MPAs network to increase the coverage of protection 

on suitable areas for Epinephelus itajara, especially in regions with stable areas, to 

contribute to the long-term persistance of this vulnerable iconic species in the future. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



General Conclusions 

 

 This master thesis highlights the importance of applying procedures of filtering 

and selection of the occurrence data and predictor variables to improve ENMs. Using 

the Goliath grouper (Epinephelus itajara) as a model species we first assess the effect of 

different datasets of occurrence data on ENMs performance and ouputs, then the effect 

of different datasets of environmental predictors and, at last, we applied the best 

approaches to develop an improved analysis of future climate change impacts on the 

range of E. itajara. 

In the first chapter, we developed a framework that was able to support decision 

about the use of unreliable records in ecological niche modeling for the target species, 

sheding light on how uncertainty in occurrence data can affect ENMs and overall 

measures of model accuracy. The main conclusions from this chapter were that the use 

of uncertain occurrence records decrease the models' performance, increasing their 

omission error and decreasing their ability to project the models from the environmental 

space to the geographical space, leading to low power to predict suitable areas. But we 

highlighted that the decision about the exclusion of these uncertain and/or biased 

records should be take with care, because if the records with low uncertainty are not 

enough to represent the entire environmental niche of the species such an exclusion  can 

be unfeasible. We also called the attention for the high proportion of records with high 

uncertainty and bias among data available from online occurrence repositories, which 

point to the need for data cleaning and filtering in biodiversity studies, and also to the 

need to improve and expand the occurrence records databases. 

 In the second chapter, we compared models developed with different 

combinations of environmental predictors to assess the effect of adding habitat variables 

on ENMs performance. Our results suggest that habitat predictors in combination with 

climate have a strong influence on ENMs accuracy and suitability predictions. The 

model that combined climate/salinity and habitat predictors for different habitats 

(EnvHabs) showed the best performance according to all analysed metrics (Sensitivity, 

Specificity, TSS and Boyce Index). Furthermore, models that include habitat variables 

(EnvHabs and HabOnly) seems to be more able to predict the biogeographic patterns in 

more detail and the historical distribution of the species. We also highlight the need to 



choose carefully the predictors to calibrate models, and suggest that add non-climate 

variables to ENMs, particularly habitat predictors, should be recommended. In addition, 

our results about exposure to anthropogenic stressors for suitable areas predicted by 

both best models (EnvHabs and HabOnly) revealed a worrying situation for E. itajara. 

The species range are under great exposure, where most of suitable area extent (>95%) 

face some type of human pressure, with similar values of impact for all antropogenic 

stressors analyzed (artisanal fishing; demersal, non-destructive, lowbycatch fishing; 

ocean pollution and population pressure). In the same direction, the low percentage 

(>9,2%) of predicted suitable areas under some kind of protection by the current MPAs 

network increasing the concern about the target species persistence. 

 Finally, in the third chapter, we applied the best ENM approach identified in the 

second chapter to improve the assessment of future climate change impacts on the 

geographic distribution of Epinephelus itajara. Using the EnvHabs model, improved by 

the inclusion of habitat predictors, we were able to assess climate change impacts in 

2100 scenario taking into account the synergistic effect of changes in temperature and 

salinity, along with the change that species habitats will undergo in the future. Our 

findings suggest that future climate change may have a positive impact on the potential 

range extent of Epinephelus itajara, promoting a gain (1.5-fold) in the suitable areas 

compared to the current distribution. Although this could reduce the species' 

vulnerability to future climate changes, the distribution of suitable areas in 2100 will 

undergo a poleward shift. We highlighted that this change can result in a negative 

impact if areas currently suitable and occupied by the Goliath grouper turn unsuitable 

and undergo local extirpations in the future. Furthermore, new suitable areas predicted 

for the future can be prevented to be occupied by E. itajara due to dispersion and biotic 

(e.g. prey, competidors, pathogens) restrictions. We identified stable areas that could 

serve as a refuge for the species in a climate change scenario, located in the mouth of 

the Amazon River, in part of the southeastern and southern Brazilian coast and the state 

of Florida. Differently from the past global warming (LGM to Middle Holocene), when 

80% of the suitable areas were maintained as stable areas, the extent of stable areas 

predicted in the future corresponded to less than 30% of the current suitable areas. 

Therefore, the restricted distribution of stable areas in 2100 raises a concern for the 

future persistence of E. itajara. We also found a worring situation regarding habitat 

protection, indicating that the current MPAs network offers a limited coverage for the 

target species both in the present and in the future, with less than 10% of the suitable 



areas and less than 20% of the stable areas under some level of protection. Therefore, an 

expansion of the MPAs network, especially in regions with stable areas for E. itajara,  

it is highly recommended to contribute to the long-term persistance of this vulnerable 

iconic species in the future. 
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Appendices 

 

1. Marine ecoregions and model calibration area  

 The calibration area used in ENM/SDM models for Epinephelus itajara was 

delimited  based on the World Marine Ecoregions (Spalding et al., 2007) in which 

species was present, plus those ecoregions immediately adjacent (Figure S1) (Table S1). 

 

 

Figure S1. Ecoregions in the calibration area used in ENM/SDM models for Epinephelus itajara. 

 

Table S1. Ecoregions in the calibration area used in ENM/SDM models for Epinephelus itajara. 



 

 

2. Jackknife test for environmental variables importance 

 The jackknife test was performed for 165 models:  11 variables * 5 algorithms 

(BRT, GLM, Maxent, RBF, SVM) * 3 types of occurrence dataset (Rd, Pd, FullSet) * 

one replica. We evaluated the value of AUC for each model created with only one 

variable and with all the remaining variables minus this one variable. These values 

indicated which variables contributed most for the model performance when used alone 

and which, when removed, impaired most the model performance (Table S2). After this 

test, we created a Spearman correlation matrix to analyze the correlation between the 

variables. At the end of this process we retained only the variables that matter most to 

the model and the lowest correlated (r² < |0.7|). 

 



Table S2:  Jackknife test results showing the performance (in AUC values) of the ENM/SDM models 
generated for Epinephelus itajara with only and without each environmental variable. Biogeo08: Mean 
Annual Salinity, biogeo09: Salinity of the Freshest Month, biogeo10: salinity of the saltiest month, 
biogeo11: Annual range in salinity, biogeo12: annual variance in salinity, biogeo13: Mean annunal in 
temperature, biogeo14: temperature of the coldest month, biogeo15: temperature of the warmest month, 
biogeo16: annual range in temperature, biogeo17: annual variance in temperature. 

 

 

3. Pseudo-absence generation 

 Given that, except Maxent, the other four chosen modeling algorithms work with 

presence-absence (or pseudo-absence) data, we tested the effect of different amounts of 

pseudo-absence points. The number of pseudo-absences can influence models accuracy 

(ability to predict suitable or unsuitable areas). Algorithms of regression techniques 

seem to work best with a high number of pseudo-absences, whereas classification and 

machine learning algorithms tend to have a better result with a low or moderate amount 

of pseudo-absences, i.e., number of pseudo-absences equalized to the presences or a 

little higher (Barbet-Massin et al., 2012). Therefore, we performed a sensitivity analysis 

creating models with different proportions of pseudo-absences in relation to the set of 

presences (1:1, 2:1, 10:1 and 100:1). Models generated with a proportion of 1:1 

obtained, on average, the highest sensitivity value (0.95 ± 0.06) (Table S3). Thus, we 

generate pseudo-absences randomly in the geographic calibration space, excluding cells 

with detected presence plus a 50km buffer, respecting the proportion of one pseudo-

absence for each presence record. 

 



Table S3:  Sensibility analysis results showing the performance (in Sensitivity values) of the ENM/SDM 
models generated for Epinephelus itajara with different presence/absence ratios for selection of pseudo-
absences. 

 

 

4. Environmental suitability predictions  

 The follow maps show the geographic distribution of the environmental 

suitability generated by the ensemble models for the three occurrence datasets FullSet 

(Figure S2), RdPd (Figure S3), and PdRd (Figure S4). 

Figure S2: Ensemble model for FullSet occurrence dataset. Darker blue color are high suitability cells and 
light blue colors are low suitability cells. Values range from 0.02 to 0.94. 



Figure S3: Ensemble Model for RdPd occurrence dataset. Darker blue colors are high suitability cells and 
ligh blue colors are low suitability cells. Values range from 0.07 to 0.95. 
 

Figure S4: Ensemble Model for PdRd occurrence dataset. Darker blue colors are high suitability cells and 
ligh blue colors are low suitability cells. Values range from 0.00 to 0.95. 
 



5. Selection of variables for the Goliath grouper ecological niche model 

The Jackknife test is a resampling method that consists of removing an element 

from the original set and observing the effect of the remaining elements, repeating it n 

times (where n is the number of element). Therefore, we created ecological niche 

models using 11 environmental variables minus the retained variable, repeating the 

process until all variables have been retained (n = 12), being able, then, to observe how 

much the model had gains, through the Area Under the ROC Curve (AUC), when we 

removed the variable in question. Furthermore, we did the opposite process, in which 

we built ecological niche models only with the variable retained in the previous step, to 

analyze how good the model is only with that variable, repeating until models with all 

the variables have been made (Table S4). From this analysis, we created a ranking of 

the most important variables and compared how correlated they were with the rest of the 

group, through Spearman's correlation matrix (Figure S5). In this way, we eliminate the 

variables that are most correlated with those that are in the first positions of the ranking, 

retaining, at the end of the process, the most important and least correlated variables. 

This procedure was done using the getVarImp function in the SDM package on R. 

 

Table S4: Table with the contribution values of the variables for the niche models. In the Without column 
are the contribution values for the model when the variable in question is removed from the model 
construction and in the With Only column are the contribution values for the model when only the 
variable in question is used for the model construction. Salinity.Lt.max = average of the maximum 
salinity records, Salinity.Lt.min = average of the minimum salinity records, Salinity.max = maximum 
salinity value, Salinity.mean = average of the salinity values, Salinity.min = value minimum salinity, 
Salinity.range = range of salinity values, Temperature.Lt.max = average of maximum temperature 
records, Temperature.Lt.min = average of minimum temperature records, Temperature.max = maximum 
temperature value, Temperature .mean = average of temperature values, Temperature.min = minimum 
temperature value, Temperature.range = range of temperature values. 

 



 

Figure S5: Spearman's correlation matrix with the correlation values for the pairs of variables. Reddish 
colors indicate strong positive correlations and blueish colors indicate strong negative correlations. 

 
 

6. Development of habitat predictors 

 

To develop habitat predictors we first applied an ENM/SDM approach to generate 

environmental suitability for each coastal habitat type (seagrass, mangrove, rocky 

shores and coral reefs), and next we generated rasters representing distance from the 

suitable area for these habitats. 

 

6.1.Occurrence records for habitats 

Information on seagrass distribution derived from the World Atlas of Seagrass. This 

dataset represents the compilation of occurrence polygon maps and points of seagrass 

around the world. Due to the heterogeneity of the data and sampling problems, we only 

use information from polygons. The geographic distribution of mangroves derived from 

the occurrence polygon maps provided by USGS, generated from Global Land Surveys 

images at a resolution of 30 meters (Global Mangrove Distribution - USGS). Following 

Halpern et al. (2008), for rocky shores we assume a distribution encompassing any cell 



distant 1km from the coast line. Therefore, from a detailed coastline provided by 

OpenStreetMap (https://osmdata.openstreetmap.de/), we created a 1 km buffered 

polygon over the entire model calibration area to represent the geographic extent of 

rocky reef. Information about coral reef distribution was extracted from the Reef at Risk 

Revisited, which combines a large number of coral reef maps derived from different 

sources.  

To obtain occurrence records for the ecological niche modeling, we randomly 

generated georeferenced points distant 1 km from each other inside polygons of each 

habitat type, and then we apply a spatial rarefaction to eliminate points nearer than 10 

km in order to avoid spatial autocorrelation effects that could compromize modeling 

results (F. Dormann et al., 2007). Table S5 shows the total occurrence records obtained 

for each habitat type. All of these procedures were performed with ArcGIS and 

SDMToolBox tool. 

 

6.2. Variables selection for ecological niche and environmental suitability modeling  

To select environmental variables for ecological niche models of the habitats we 

applied a PCA approach, analysing the first two axes of the main components of the 

entire set of environmental variables. For seagrass, rocky shores and coral reefs we use 

only marine variables from BioOracle. For mangroves which are influenced by both 

marine (e.g. sea temperature and salinity) and atmospheric (temperature and 

precipitation) components (Ward et al., 2016),  we used bioclimatic variables from 

WorldClim  in addition to BioOracle variables in order to more accurately capture the 

environmental suitability for this system (Table S5). 

 

 

 

 

 

 

 

 

 

Table S5: Number of georeferenced and unique occurrence records and environmental variables used for 
ecological niche modeling of habitats. Salinity.Lt.max = average of maximum salinity records, 



Salinity.Lt.min = average of minimum salinity records, Salinity.range = range of salinity values, 
Temperature.Lt.max = average of maximum temperature records, Temperature.Lt.min = average of the 
minimum temperature records, bio 05 = Maximum temperature of the hottest months, bio06 = Minimum 
temperature of the coldest months, bio13 = Precipitation of the wettest months, bio14 = Precipitation of 
the driest months. 

 

 

6.3. Ecological niche and environmental suitability modeling for habitats and derived 

distance variables 

To generate environemtal suitability we ran 500 replicas of ecological niche models 

(5 algorithms * 100 replicates per algorithms) for each habitat, using the bootstraping 

method implemented in the SDM package on R platform. From the confusion matrix we 

calculated model performance metrics of sensitivity, specificity and  True Skill 

Statistics - TSS (Allouche et al., 2006), based on the threshold rule that maximizes the 

sum of sensitivity with specificity (Liu et al., 2013). We only use models that have at 

least 0.700 sensitivity and specificity to generate binary consensus maps of 

environmental suitability (Figures S6 to S9). From these binary maps, in ArcMap 

software we created a continuous raster representing the Euclidean distance from each 

cell of suitable area (cell value = 1) (Chapter 2, Figures 2 to 5). Using the map algebra 

in ArcMap, we summed the values of the same pixel for all habitats in order to obtain a 

raster representing the Euclidean distance for any type of habitat (Chapter 2, Figure 6).  

These Euclidean distance rasters were used as habitat variables in our ecological niche 

models for Epinephelus itajara. 

 

 

 



 

Figure S6: Binary suitability map for seagrass in the Atlantic Ocean. Dark blue are the areas of presence 
(cell value = 1) of suitable area. Ligth blue are not suitable areas (cell value = 0). Green dots are the 157 
unique records used for building the ecological niche model for this habitat. 

 

Figure S7: Binary suitability map for mangrove in the Atlantic Ocean. In detail the island Cuba where 
dark blue are the areas of presence (cell value = 1) of suitable area. Ligth blue are not suitable areas (cell 
value = 0). Red dots are the 3923 unique records used for building the ecological niche model for this 
habitat. 



 

Figure S8: Binary adequacy map for rockyreef in the Atlantic Ocean. Dark blue are the areas of presence 
(cell value = 1) of suitable area. Ligth blue are not suitable areas (cell value = 0). Green points are the 
2675 unique records used for the construction of the ecological niche model for this habitat. 

 

Figure S9: Binary adequacy map for coralreef in the Atlantic Ocean. Dark blue are the areas of presence 
(cell value = 1) of suitable area. Ligth blue are not suitable areas (cell value = 0). Green dots are the 311 
unique records for building the ecological niche model for this habitat. 



7. Pseudo-absences and data partitioning settigns for the Goliath grouper 

ecological niche model 

The methods chosen for pseudo–absence generation and data partitioning affected 

output and performance of ENMs (Morgane Barbet-Massin et al., 2012; Radosavljevic 

& Anderson, 2014; Iturbide et al., 2015; Roberts et al., 2017). In this regard, we 

performed a sensitivity analysis to define better parameterization for Goliath grouper 

ecological niche models. To conduct a species-specific tuning of model settings, we 

generated models by the methods of cross-validation (with 5 and 10 folds) and 

subsampling (90% of the records for training and 10% for validation). For each 

partitioning method we tested different pseudo-absences to presences ratios  (1:1, 2:1, 

10:1). The choice of the best model was based on the sensitivity metric, a statistic that 

measures the omission error (number of presences incorrectly predicted as absence) in 

the geographic space. Our results indicated subsampling method with a pseudo-absence 

ratio for the presence of 1/1 as best parameters (Table S6). 

 

Tabela S6: Results of the sensitivity analysis for model parameterization of data partitioning and pseudo-
absences to presences ratio. 1xCV10 = cross-validation with 10 folds and 1:1 pseudo-absence to 
presences ratio, 2xCV10 = cross-validation with 10 folds and 2:1 pseudo-absence to presences ratio, 
10xCV10 = cross-validation with 10 folds and 10:1 pseudo-absence to presences ratio, 1xCV5 = 
crossvalidation with 5 folds and 1:1 pseudo-absence to presences ratio, 2xCV5 = cross-validation with 5 
folds and 2:1 pseudo-absence to presences ratio, 10xCV5 = cross-validation with 5 folds and 10:1 
pseudo-absence to presences ratio, 1xSub = subsampling with 90% of training points and 10% for 
validation and 1:1 pseudo-absence to presences ratio, 2xSub = subsampling with 90% of points for 
training and 10% for validation and 2:1 pseudo-absence to presences ratio, 10xSub = subsampling with 
90% of points for training and 10% for validation and 10:1 pseudo-absence to presences ratio. Best 
parameters and correspondent sensitivity value are shown in boldface. 

 

 

8. Anthropogenic stressors and Marine Protected Areas data 

 

Data about anthropogenic stressors were obtained from Halpern (2015) and included 

variables that summarize the impacts of the main threats for Epinephelus itajara 

according IUCN assessments (Craig et al., 2009; Bertoncini et al., 2018). The four 

normalized variables used were: (i) artisanal fishing (Figure S10), (ii) demersal, non-

destructive, lowbycatch (Figure S11), (iii) ocean pollution (Figure S12), and (iv) 

population pressure (Figure S13) (see Halpern, 2015, supplementary material, for 



details about how these variables were created). In addition to these four variables, we 

used map algebra to generate a cumulative impact variable by summing all the impact 

rasters (Figure S14). 

Marine Protected Areas (MPAs, IUCN categories I-VI) came from the World 

Database of Protected Areas (WDPA, http://protectedplanet.net) (Figure S15). 

 

 

 

Figure S10: Artisanal fishing variable. In detail, the island of Cuba where redissh colors are areas where 
there is high pressure of artisanal fishing and lighter colors where there is low presence of artisanal 
fishing. 



 

Figure S11: demersal, non-destructive, lowbycatch variable. In detail Gulf of Mexico where redissh 
colors are areas where there is a high presence of demersal, non-destructive, lowbycatch and lighter 
colors are areas where there is a low presence of demersal, non-destructive, lowbycatch. 

 

Figure S12: Ocean pollution variable. Reddish colors are areas where there is a high concentration of 
ocean pollution and lighter colors are areas where there is a low concentration of ocean pollution. 



 

Figure S13: Population pressure variable. In detail, the island of Cuba where redissh colors are areas 
where there is a high pressure of population pressure and lighter colors where there is a low presence of 
population pressure. 

Figure S14: Cumulative impact variable. Reddish colors are areas where there is a high impact of the 
four variables together and lighter colors are areas where there is a low impact of the four variables 
together. 



 

Figure S15: Map of Marine Protected Areas (MPAs). In detail,  the Gulf of Mexico and the Caribbean 
Sea where MPAs areas are represented by green polygons. 

 

 


